 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q2KN96 from www.uniprot.org...
The NucPred score for your sequence is 0.88 (see score help below)
1 MRKASRSVGAAPKVPANNKSQATERSKSESSAPTASKVSRPGSSLSKAKS 50
51 NDDLLAGMAGGLPASNSVKVKKNSTTSYPNSGTAMSGQEGRTRSSAGSSS 100
101 NTKRSGSSGAKEVGSSRERLRERSRLTANKKPQGLGVGTGEVSAPSKRSR 150
151 GRTDSDMIRMSKSKSDNQISDRAALEAKVKELMNLAKNKDAEILLLRTEL 200
201 RDTRSQLGQDVSDKSPDDLPLIHLQEQNTTVCEELQQLKSENRMLKDRLN 250
251 ALGFSLGQQPDDPDKLYGFQSLGINPGSHSDCGGGTLTSSVEGSAPGSME 300
301 DLLSQDESTLTGERRSSSMDNLDSECSEVYQPLTSSDDALDAPSSSSESE 350
351 GLPSTERSRKGSSGNASEVSVACLTERIHQMEENQHSTAEELQATLQELA 400
401 DLQQITQELNSENERLGEEKVILMDSLCQQSDKLELFSRQLEYAQALLDE 450
451 HHIAYSLDEDLKSSRYLDLEQRYMDLAENGRFEREQLLGVQQHLSNSLKM 500
501 AEQDNKDAQDVIRALKERNHHMERIAEAEQLSKQALAATLEEYKATLNSE 550
551 QGECARLKALLEQEKQRVAELYSIHSSGDASHIQNLLESVRSDKEKAESL 600
601 ASSLQEELLHARTDVNRMQDAFGKLEDEYRAFREEAQKQVSELTLALEKV 650
651 RHELEEKETELSDMKETIFELEDEVEQHRAVKLHDNLIISDVENAVKKLQ 700
701 DQKHDMEREIKILNRKLREESAEWRQFQADLQTAVVIANDIKSEAQEEIG 750
751 ELKRQLQEALEKNEKLAKEMENATSRKQEEERGRVYNYMNAVERDLAALR 800
801 QGMGLNRRSSTSSDPAPTVKTLIKSFDNASSQAAAVAAAAATPISRTPLS 850
851 PSPMKTPPAAAVSPMQRHSISGPISVAKSLPGLSEKRPSYAEIPVQEHML 900
901 RSSSSSRSAASLPRVPAIDNAKSISVSRRSSEELKRDISVPDGSSAPSLM 950
951 VMTSPSPQLSLSSSSPTASVTPTARSRIREERKDPLAALAREYGGSKRNA 1000
1001 LLKWCQKKTEGYPNIDITNFSSSWNDGLAFCALLHTYLPAHIPYQELTNQ 1050
1051 DKRRNFTLAFQAAESVGIKSTLDINEMVRTERPDWQCLMTYVTSIYKYFE 1100
1101 T 1101
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.