| Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q2QL82 from www.uniprot.org...
The NucPred score for your sequence is 0.96 (see score help below)
1 MATDGASCEPDASRAPEEAAGATAEAARKEFDVDTLSKSELRMLLSVMEG 50
51 ELEARDLVIEALRARRKEVFIQERYGRFNLNDPFLALQRDYEAGAGDKEK 100
101 KPVCTNPLSILEAVMAHCRKMQERMATQLAAAESRQKKLEMEKLQLQALE 150
151 QEHKKLAARLEEERGKNKQVVLMLVKECKQLSGKVIEEAQKLEEAMAKLE 200
201 EEKKKTNELEEELSAEKRRSTEMEAQMEKQLSEFDTEREQLRAKLNREEA 250
251 HTTDLKEEIDKMKKMIEQLKRGSDSKPSLSLPRKTKDRRLVSISVGTEGP 300
301 LTRSVACQTDLAIEGTDHVKKSPLTVPGKPSPGSAKGSVCANAAHVRPGM 350
351 DRQASHGDLTGSSAPSLPPASANRIEENGPSTGSTADLPSSTAPAPGSAA 400
401 QSPVAAALGPAHSAQSPCTPAPAQPGLNPRVQAARFRFQGNANDPDQNGN 450
451 TTQSPPSRDVSPTSRDNLVAKQLARNTVTQALSRFTSPAVGAAPRPGAPP 500
501 TGDAGAYPPVGRTSLKTPGVARVDRGNPPPIPPKKPGLSQTPSPPHPQLK 550
551 VIMDSSRASNAGAKVDNKTVASPPSSLPQGNRVISEENLPKSSSPQLPPK 600
601 PSIDLTVAPAGCAVSALATSQVGAWPAETPGLNQPACSDSSLVIPTTTAF 650
651 RSSINPVSASSCRPGASDSLLVTASGWSPSLTPLLMSGGPAPLAGRPTLL 700
701 QQAAAQGNVTLLSMLLNEEGLDINYSCEDGHSALYSAAKNGHTDCVRLLL 750
751 NAEAQVNAADKNGFTPLCAAAAQGHFECVELLIAYDANINHAADGGQTPL 800
801 YLACKNGNKECIKLLLEAGTDRSVKTRDGWTPVHAAVDTGNVDSLKLLMY 850
851 HRAPAHGNSLNEEEPESDVSDLDDGEESSEGESKPVVPADLINHADREGW 900
901 TAAHIAASKGFKNCLEILCRHRGLEPERRDKCNRTVHDVATDDCKHLLEN 950
951 LNALKIPLRISVGEIQSGNYGSSDFECENTICVLHIRKQTSWDDFSKAVS 1000
1001 QALTNHFQAISSDGWWSLEDTAFNNTADSDIGLSLDSVRAIMLGSVPWSA 1050
1051 GQSFTQSPWDFMRKNKAEQVTVLLSGPQEGCLSSVAYASMIPLQMLQNYL 1100
1101 RLVEQYHNVIFHGPEGSLQDYIVHQLALCLKHRQMAAGFSCEIVRAEVDA 1150
1151 GFSKEQLVDLFISSACLIPVKQSPVKKKIIIILENLEKSSLSELLGDFLA 1200
1201 PLEIRSPESPCTFQKGNGTSECYYFHENCFLMGTIAKACLQGADLLVQQH 1250
1251 FRWVQLRWDGEPMHGLLQRFLRRKLVNKFRGQAPSPCDPVCKTIDWALSV 1300
1301 WRQLNSCLARLGTPEALLGPKYFLSCPVVPGHAQATVKWMSKLWNAVIAP 1350
1351 RVQEAILSRASVKRQPGFGQTTTKKHPSQGQQAVVKAALSILLNKAVLHG 1400
1401 CPLPRAELDQHTADFKGGSFPLSLVSNYNSCSKKKENGAWRKVNTSPRRK 1450
1451 SGRFSSPTWNKPDLSNEGIKNKTISQLNCNKNASLSKQKSLENDLSLMLN 1500
1501 LDPRLSLGSDDEADLVKELQSMCSSKSESDISKIADSRDDLRTFDSSGNN 1550
1551 PAFSATVNNPRMPVSQKEVSPLSSHQTTECSNNKSKTEPGVSRVKSFLPV 1600
1601 PRSKVTQCSQNTKRSSSSSNTRQIEINNNSKEENWNLHKNEQTHRKT 1647
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.