| Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q2QLA2 from www.uniprot.org...
The NucPred score for your sequence is 0.95 (see score help below)
1 MATDGASCEPDFSRSPEDAAGATAEAAKKEFDVDTLSKSELLMLLSVMEG 50
51 ELEARDLVIEALRARRKEVFIQERYGRFNLNDPFLALQRDYEAGAGDKEK 100
101 KPVCTNPLSILEAVMAHCRKMQERMSTQLAAAESRQKKLEMEKLQLQALE 150
151 QEHKKLASRLEEERGKNKHVVLMLVKECKQLSSKVIEEAQKLEEVMAKLE 200
201 EEKKKTSALEEELSAEKRRSTEMEAQMEKQLSEFDTEREQLRAKLHREEA 250
251 HTTDLKEEIDKMKKMIEQLKRGNDNKPSLSLPRKTKDRRLVSISVGTEGP 300
301 MTRSVACQTDPVIESSDHVKKLPLTMPVKPSTGSPLVSANAKGNVCTNAA 350
351 LVRPGIDRQASHGDLIGSSLPTVPPPSANRIEENGPSTGSTADLTSSTPP 400
401 LPNNAAPPTVQTPGVAPQSYSQASPMHSLHSPCANASLHPGLNPRIQAAR 450
451 FRFQGNANDPDQNGNTTQSPPSRDVSPTSRENLVAKQLARNTVTQALSRF 500
501 TSPQAGAPPRPGVSPTGDVGTYPPVGRTSLKTPGVARVDRGNPPPIPPKK 550
551 PGLSQTPSPPHPQLKVIMDSSRASNAGAKVDNKTVASPPSSLPQGNRVIN 600
601 EENLPKSSSPQLPPKPSIDLTVAPAGCAVSALATSQVGAWPAETPGLNQP 650
651 ACSESSLVIPTTIAFSSSINPVSASSCRAGASDSLLVTASGWSPSLTPLL 700
701 MSGGPAPLAGRPTLLQQAAAQGNVTLLSMLLNEEGLDINYSCEDGHSALY 750
751 SAAKNGHTDCVRLLLNAEAQVDAADKNGFTPLCAAAAQGHFKCVQLLIAY 800
801 DANINHAADGGQTPLYLACKNGNKECIKLLLEAGSDRSIKTRDGWTPVHA 850
851 AVDTGNVDSLKLLMYHRAPAHGSSLHKEEPESSIFDLDRQGEESPEGTFK 900
901 PVVPADLINQADREGWTAAHIAASKGFKNCLEILCRHGGLEPERRDKCSR 950
951 TAHDVATDDCKHLLENLNALKIPLRISVGEIQPGNYGSDDFECENTICAL 1000
1001 NIRKQTSWDDFSKAVTQALTNHFQAISSDGWWSLEDMKFNNTTDSSIGLG 1050
1051 ASSVRSITLGNVPWSAGQSFTQSPWDFMRKNKAEQITVLLSGPQEGCLSS 1100
1101 VTYTSMIPLQMLQNYLRLVEQYHNVIFHGPEGSLQDYIAHQLALCMKHRQ 1150
1151 MAAGFSCEIVRAEVDAGFSKEQLVDLFISSACLIPVKQSPVKKKIIIILE 1200
1201 NLERSSLSELLGDFLAPLENRCPESPCTFQKGNGTAECYYFHENCFLMGT 1250
1251 IAKACLQGSDLLVQQHFRWVQLRWDGEPMQGLLQRFLRRKVVNKFRGQVP 1300
1301 SPCDPVCKTVDWALAVWRQLNSCLARLGTPEALLGPKYFLSCPVIPGHAQ 1350
1351 ATVKWMSKLWNAVIAPRVQDAILSRASVKRQPGLGQTIAKKHPSQGQQAV 1400
1401 VKAALSILLNKAVLHGCPLPRAELDQHTADFKGGSFPLSLVSSYNSCSKK 1450
1451 KGESGAWRKVSTSPRKKSSRFSSPTWNKPDLSEEGIKNKTISQLNCNRNA 1500
1501 SLSKQKSFENDLSLTLSLDQRFSLGSDDEADLVKELQSMCSSKSESDISK 1550
1551 IADSRDDLRRFDSPGNNPAFSATVNNPRMPVSQKEVSPLSSHQTTECSNS 1600
1601 QSKTELGVSRVKSFLPVPRSKVTPCSQNTKRSSSSSNTRQIEINNNSKEE 1650
1651 IWNLRKNEQVEKPNK 1665
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.