 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q2QLF9 from www.uniprot.org...
The NucPred score for your sequence is 0.72 (see score help below)
1 MQRSPLEKASVVSKLFFSWTRPILKKGYRQRLELSDIYQIPSADSADNLS 50
51 EKLEREWDRELASKKNPKLINALRRCFFWRFTFYGILLYLGEVTKAVQPL 100
101 LLGRIIASYDPDNKTERSIAIYLGIGLCLLFIVRTLLLHPAIFGLHHIGM 150
151 QMRIAMFSLIYKKTLKLSSRVLDKISIGQLVSLLSNNLNKFDEGLALAHF 200
201 VWIAPLQVALLMGLIWELLQASAFCGLGFLIVLALFQAGLGRMMMKYRDQ 250
251 RAGKINERLVITSEMIENIQSVKAYCWEEAMEKMIENLRQTELKLTRKAA 300
301 YVRYFNSSAFFFSGFFVVFLSVLPYALIKGIILRKIFTTISFCIVLRMAV 350
351 TRQFPWAVQTWYDSLGAINKIQDFLQKQEYKTLEYNLTTTEVVMENVTAF 400
401 WEEGFGELFEKAKQNNNNRKTSNDDNNLFFSNFSLLGTPVLKDINFKIER 450
451 GQLLAVAGSTGAGKTSLLMMIMGELEPSEGKIKHSGRISFCSQFSWIMPG 500
501 TIKENIIFGVSYDEYRYRSVIKACQLEEDISKFAEKDNIVLGEGGITLSG 550
551 GQRARISLARAVYKDADLYLLDSPFGYLDVLTEKEIFESCVCKLMANKTR 600
601 ILVTSKMEHLKKADKILILHEGSSYFYGTFSELQNLRPDFSSKLMGYDSF 650
651 DQFSSERRNSILTETLRRFSLEGDAPVSWTETKKQSFKQTGEFGEKRKNS 700
701 ILNSINSIRKFSIVQKTPLQMNGIEEDSDEPLERRLSLVPDSEQGEAILP 750
751 RISVINTGPALQVRRRQSVLNMMTHSVNQGQSIHRKTTASTRKVSLAPQA 800
801 NLTELDIYSRRLSQETGLEISEEINEEDLKECFFDDMESIPAVTTWNTYL 850
851 RYITLHKSLIFVLIWCLVIFLAEVAASLVVLWLLRNTPFQDKGNSTYSRN 900
901 NSYAVIITNTSSYYVFYIYVGVADTLLALGFFRGLPLVHTLITVSKILHH 950
951 KMLHSVLQAPMSTLNTLKAGGILNRFSKDIAILDDLLPLTIFDFIQLLLI 1000
1001 VIGAIAVVSVLQPYIFLATVPVIAAFVLLRAYFLQTSQQLKQLESAGRSP 1050
1051 IFTHLVTSLKGLWTLRAFGRQPYFETLFHKALNLHTANWFLYLSTLRWFQ 1100
1101 MRIEMIFVIFFIAVTFISILTTGEGEGTVGIILTLAMNIMSTLQWAVNSS 1150
1151 IDVDSLMRSVSRVFKFIDMPTEEGKPTKSTKAYKNGQLSKVMIIENSHVK 1200
1201 KDDIWPSGGQMTIKDLTAKYIEGGNAILENISFSISPGQRVGLLGRTGSG 1250
1251 KSTLLSAFLRLLNTEGEIQIDGVSWDSITLQQWRKAFGVIPQKVFIFTGT 1300
1301 FRKNLDPYEQWSDQEIWKVADEVGLRTVIEQFPGKLDFVLVDGGCVLSHG 1350
1351 HKQLMCLARSVLSKAKILLLDEPSAHLDPVTYQIIRRALKQAFADCTVIL 1400
1401 CEHRIEAMLECQQFLVIEENKVRQYDSIQKLLNEKSLFRQAISHSDRVKL 1450
1451 FPHRNSSKYKSRPQIASLKEETEEEVQETRL 1481
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.