SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q2QLG9 from www.uniprot.org...

The NucPred score for your sequence is 0.96 (see score help below)

   1  MATDGASCEPDSSRAPEDPAGATAEAPKKEFDVDTLSKTELRMLLSVMEG    50
51 ELEARDLVIEALRARRKEVFIQERYGRFNLNDPFLALQRDYEAGAGDKEK 100
101 KPVCTNPLSILEAVMAHCRKMQERMATQLAAAESRQKKLEMEKLQLQALE 150
151 QEHKKLAARLEEERGKNKQVVLLLVKECKQLSGRVIEEAQRLEEVMAKLE 200
201 EEKKRTSELEEELSAEKRRSTEMEAQMEKQLSEFDTEREQLRAKLSREEA 250
251 HTTDLKEEVDKMKKMIEQLKRGGDGKPSLSLPRKTKDRRLVSASVGTEGP 300
301 LTRSVACQTDLAVESAEPVKKSPLTVHVKPSPGSPHVSVKGSGGKPGMDR 350
351 QASHGELMGSALPTLPPPSASRIEENGPSPGSTPDAPGSAAPPGSAAPPG 400
401 SAAPPGSAAPPGSAAPHSFHSPCASAPPHPGLNPRIQAARFRFQGNANDP 450
451 DQNGNTTPSPPSRDVSPTSRDNLVAKQLARNTVTQALSRFTSPPAGAAPR 500
501 PGASPTGDGGAYPPVGRTGLKTPGVARVDRGNPPPIPPKKPGLSQTPSPP 550
551 HPQLKVIMDSSRASNAGAKVDNKTVASPPSSLPQGSRVINEENLPKSSSP 600
601 QLPPKPSIDLTVAPAGCAVSALATSQVGAWPAETPGLNHPACSDSSLVIP 650
651 TTTASRSAINPVSASSCSPGASDSLLVTASGWSPSLTPLLMSGGPAPLAG 700
701 RPTLLQQAAAQGNVTLLSMLLNEEGLDINYSCEDGHSALYSAAKNGHTDC 750
751 VRLLLNAEAQVNAADKNGFTPLCAAAAQGHFECVELLIAYDAHINHAADE 800
801 GQTPLYLACKNGNKECIKLLLEAGTNRNVKTRDGWTPVHAVVDTGDVDSL 850
851 KLLMYHRAPARGNSLNEEEPKSDIFDLDEGEESPEGISKPVIPADLINYA 900
901 NREGWTAAHIAASKGFKNCLEILCRHRGLEPEKRDKCNRTVHDVATDDCK 950
951 HLLENLNALKIPVRISVGEIQPGNYGSNDFECENTICALHIRKQTSWDDF 1000
1001 SKAVSQALTNHFQAISSDGWWSLEDTALNDTADSNIGLSTSSVRAIMLGH 1050
1051 VPWSSGQSFTQSPWDFMKRNKVEQVTVLLSGPQEGCLSSVTYASMIPLHM 1100
1101 LQNYLRLIEQYRNVIFHGPEGSLQDYIVHQLALCLKHRQMAAGFSCEIVT 1150
1151 AEVDAGFSKEQLVDLFISSACLIPVKQSPVKKKIIIIILENLEKSSLSEL 1200
1201 LGDFLAPLENRSTESPCTVQKGNGMSACYYFHENCFLMGTIAKACLQGSE 1250
1251 LLVQQHFRWVQLRWDGEPMQGLLQRFLRRKVVNKFRGQVPSPCDLVCKTV 1300
1301 AWALSVWRQLNSCLARLGTPEALLGPKYFLSCPVIPGHAQATVKWMSKLW 1350
1351 NAVIAPRVQEAILSRASMKRQPGFGQTTAKKHPSQGQQAVVKAALSILLN 1400
1401 KAVLHGCPLPRAELDQHTADFKGGSFPLSLVSSYNSCSKKKESGAWRKVN 1450
1451 TSPRRKSGRFSSPTWNKADPSSEGLKNKTISQLNCNKNASLSKQKSLEND 1500
1501 LSLMLNLDQRLSLGSDDEVDLVKELQSMCSSKSESDISKIADSRDDLRTF 1550
1551 DSSGNNPAFSATVNNPRMPVSQKEVSPLSSHQTTECSNNSKSKPESGVSR 1600
1601 AKSFLPVPRSKATQCSQNTKRSSSSSNTRQIEINNNSKEENWNLHKNEQI 1650
1651 EKPNK 1655

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.