 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q2UKV8 from www.uniprot.org...
The NucPred score for your sequence is 0.90 (see score help below)
1 MAEDDAEKAFFQAQAMNADSVDYKAVEDQGASSDSDDYDPSKTLQDQYSA 50
51 SILDSKQSEIAPSSASPSDPNPPTQSIPPETDPSQPADSAYPSQTPSRAD 100
101 SQASVSAPASGTSVPLKTRTIGGFVVEDEDEDDAGDADYEPPAVLGVEDM 150
151 NTISMNVPQQPISGNANEDTPTPDVSMDGAVQASADAKNFPNSSYTPASA 200
201 AASKSDTPALLSQDMYNSRTLQSENMQDSAAATPVPDSPSTSKGRLPHDR 250
251 VGILEDRIQEDPRGDIPAWLELINEHRNRNRIDSAREVYERFLTAFPFSA 300
301 EQWVAYATMESELNELYRLEQIFNRTLLTIPDVQLWTVYLDYVRRRNPLT 350
351 TDTTGQSRRIISSAYDLALQYVGVDKDSGSIWTDYVQFIRSGPGNVGGSG 400
401 WQDQQKMDLLRKAYQKAICVPTQAVNNLWKEYDQFEMGLNKLTGRKFLQE 450
451 QSPAYMTARSSYTELQNITRDLNRTTLPRLPPVLGSDGDIEFGQQVDIWK 500
501 RWIKWEKGDPLVLKEEDQAAFKARVIYVYKQALMALRFLPEIWFEAAEFC 550
551 FLNDMENEGNEFLKNGIEANPESCLLAFKRADRLEITSESEQDPIKRGAK 600
601 VREPYDKLLNALYDLIAKARTRESQDVARLEETFAKINPDTQPSKTDDDD 650
651 DDQSDSKARESMKNAQIEALRNAHAIQIGILSKTVSFAWIALMRAMRRIQ 700
701 GKGKPGEMPGSRQVFADARKRGRITSDVYIASALIEYHCYKDPAATKIFE 750
751 RGAKLFPEDENFALEYLKHLIDINDVINARAVFEMTVRKLASNPENVHKT 800
801 KPIFAFLHEYESRYGDLVQVINLENRMRELFPEDPTLEQFAHRYSSPAFD 850
851 PTVVRPIISPSQTRPKTAFPTEQPVSRHGTPSSRYPDASVTNSPKRPLED 900
901 FDDEMNRPRKFIRADSPLKTTQRRQLDPPKRTQQVISNQTGSQFRSQGSP 950
951 APLPRDIVYLLSIIPSASAYNAGRFSPEKLVDLIRRIDMPTSISQIPLPP 1000
1001 SVRGLGFPEMSICLWGRLPSTTWPKTVHPCGKPTFIALSSITRVKCKRFT 1050
1051 GWRSPYIRKPSLPPYGTYSPSLAFLISV 1078
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.