SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q3MNT0 from www.uniprot.org...

The NucPred score for your sequence is 0.84 (see score help below)

   1  MMKKKISAKKKNQQQQQLHQPTMSEVTEEERTRYEEEEDVRDSPSDSSEE    50
51 SEDDEEEIQKVREGFIVDDEEDEVQTKKRKSHKRKRDKERPHYDDALDDD 100
101 DLELLLENSGLKRGSSSSGKFKRLKRKQIEDDEDEIESQDHQGEQQLRDI 150
151 FSDDEEVEEEAAPRIMDEFDGFIEEDDFSDEDEQTRLERREQRKKKKQGP 200
201 RIDTSNLSNVDRQSLSELFEVFGDGNEYDWALEAQELEDAGAIDKEEPAS 250
251 LDEVFEHSELKERMLTEEDNLIRIIDVPERYQMYRSALTYIDLDDEELEL 300
301 EKTWVANTLLKEKKAFLRDDWVEPFKQCVGQVVQFVSKENLEVPFIWNHR 350
351 RDYLEYVDPDAPIPGSVRELMISEDDVWRIVKLDIEYHSLYEKRLNTEKI 400
401 IDSLEIDDELVKDIKTLDSMVAIQDMHDYIQFTYSKEIRQREETQNRKHS 450
451 KFALYERIRENVLYDAVKAYGITAKEFGENVQDQSSKGFEVPYRIHATDD 500
501 PWESPDDMIERLIQDDEVIFRDEKTARDAVRRTFADEIFYNPKIRHEVRS 550
551 TYKLYASISVAVTEKGRASIDAHSPFADIKYAINRSPADLIAKPDVLLRM 600
601 LEAERLGLVVIKVETKDFANWFDCLFNCLKSDGFSDISEKWNQERQAVLR 650
651 TAISRLCAVVALNTKEDLRRECERLIASKVRHGLLAKIEQAPFTPYGFDI 700
701 GSKANVLALTFGKGDYDSAVVGVYIKHDGKVSRFFKSTENPSRNRETEDA 750
751 FKGQLKQFFDEDETPDVVVVSGYNANTKRLHDVVYNFVSEYGISVKSEFD 800
801 DGSSQLVKVIWGQDETARLYQNSERAKKEFPDKPTLVKYAISLGRYLQDP 850
851 LLEYITLGDDILSLTFHEHQKLISNDLVKEVVESAFVDLVNAVGVDINES 900
901 VRDSRLAQTLKYVGGLGPRKASGMLRNIAQKLGSVLTTRSQLIEYELTTR 950
951 TIFINCSAALKISLNKSINVKDFEIEILDTTRIHPEDYQLAMKMAADALD 1000
1001 MDEESELHEKGGVIKELLENDPSKLNLLNLNDFANQIYKLTHKLKFRSLQ 1050
1051 AIRLELIQGFAEIRSPFRILTNEDAFFILTGEKPQMLKNTVIPATITKVT 1100
1101 KNHHDPYARIRGLKVVTPSLIQGTIDENAIPRDAEYVQGQVVQAVVLELY 1150
1151 TDTFAAVLSLRREDISRAMKGGVVREYGKWDYKAEDEDIKREKAKENAKL 1200
1201 AKTRNIQHPFYRNFNYKQAEEYLAPQNVGDYVIRPSSKGASYLTITWKVG 1250
1251 NNLFQHLLVEERSRGRFKEYIVDGKTYEDLDQLAFQHIQVIAKNVTDMVR 1300
1301 HPKFREGTLSVVHEWLESYTRANPKSSAYVFCYDHKSPGNFLLLFKVNVS 1350
1351 AKVVTWHVKTEVGGYELRSSVYPNMLSLCNGFKQAVKMSSQQTKSYNTGY 1400
1401 Y 1401

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.