SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q42510 from www.uniprot.org...

The NucPred score for your sequence is 0.69 (see score help below)

   1  MGRLKLHSGIKAIEEEPEDFECTDSSNTTTLACMIDTEIAAVLAVMRRNV    50
51 RWGGRYMSGDDQLEHSLIQSLKALRKQVFSWNQPWHTISPMLYLQPFLDV 100
101 IRSDETGAPITSIALSSVYKILNLNVIDQNTANIEDAMHLVVDSVTSCRF 150
151 EVTDPASEEVVLMKILQVLLACMKNKASVMLSNQHVCTVVNTCFRVVHQA 200
201 GMKGELLQRVARHTMHELVRCIFSHLPDVERTETTLVNRAGSIKQEKAGV 250
251 DSDYAIVSKPVEDGNANSEYDVENSMATFATGAQSLMDDGPVGPGSRKPA 300
301 SPYDLHIMTEPYGVPSMVEIFHFLCSLLNVVEHVGMGSRSNTIAFDEDVP 350
351 LFALNLINSAIELGGSSIRHHPRLLSLIQDELFRNLMQFGLSMSPLILSM 400
401 VCSIVLNLYQHLRTELKLQLEAFFSCVILRLAQGKYGPSYQQQEVAMEAL 450
451 VNFCRQKSFMVEMYANLDCDITCSNVFEELSNLLSKSTFPVNCPLSAMHI 500
501 LALDGLIAVIQGMAERISNGLTGLDLGPVHLDEYTPFWMVKCDNYSDPNH 550
551 WVSFVRRRKYIKRRLMIGADHFNRDPKKGLEFLQGTHLLPDKLDPQSVAC 600
601 FFRYTAGLDKNLVGDFLGNHDEFCVQVLNEFAGTFDFQYMNLDTALRLFL 650
651 ETFRLPGESQKIQRVLEAFSERYYMQSPEILANKDAALVLSYSIIMLNTD 700
701 QHNVQVKKKMTEEDFIRNNRHINGGNDLPREFLSELFHSICNNEIRTTPE 750
751 QGAGFPEMTPSRWIDLMHKSKKTAPYILADSRAYLDHDMFAIMSGPTIAA 800
801 ISVVFDHAEHEDVYQTCIDGFLAIAKISACHHLEDVLDDLVVSLCKFTTL 850
851 LNPSSVDEPVLAFGDDAKARMATITIFTIANKYGDYIRTGWRNILDCILR 900
901 LHKLGLLPARVASDAADESEHSSEQGQGKPLANSLSSAHLQSMGTPRRSS 950
951 GLMGRFSQLLSLDTEEPRSQPTEQQLAAHQRTLQTIQKCHIDSIFTESKF 1000
1001 LQAESLLQLARALIWAAGRPQKGTSSPEDEDTAVFCLELLIAITLNNRDR 1050
1051 IVLLWQGVYEHIATIAQSTVMPCNLVDKAIFGLLRICQRLLPYKESLADE 1100
1101 LLRSLQLVLKLDARVADAYCEQIAIEVSRLVKANANHIRSQAGWRTITSL 1150
1151 LSITARHPEASESGFDAVSFVMSEGTHLYPANYVLCVDAARQFAESRVGQ 1200
1201 SERSIRALDLMGDSLEFLAKWALSAKENMGEEDFGKMSQDIGEMWLRLVQ 1250
1251 GLRKVCLDQREDVRNHALQSLQKCLGGVDGINLAHSMWSQCFDKVIFTVL 1300
1301 DDLLEIAAGSQKDYRNMEGTLLLAIKLLSKVFLQQLQELSQLSTFCKLWL 1350
1351 GVLTRMEKYMKVKVRGKKSDKLQESVPELLKNILLVMKTKGVLLQRSALG 1400
1401 GDSLWELTWLHVNNIAPSMRLELFPDQESSQLGDDETVSNGLSSPENTTG 1450
1451 S 1451

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.