  |  Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. | 
NucPred
Fetching  Q4IL82  from www.uniprot.org...
The NucPred score for your sequence is 0.99 (see score help below)
   1  MDQNGYNSSALQRPPRRGDEGCEEDRDSRPHHHHRHHHHHHHHRRDGDLP    50
  51  AGAVAGEAATASSNAGGANAHQHSTFSLRSPKPEYRPPPFSSPNGHNHSH   100
 101  HNTSTSSANHSLQSPPRPALPNPYMSSSTGAPGGPVAPALPPPVGINSSS   150
 151  SPGSSAAGLHQRHHQPGAPAHQHRAAPPPVSPLHPPVAYYPPGTNTDIYI   200
 201  PPPEPKPASRGFYDPTTDTTKERRISDAATPGASWHNANANAPPAGTPKT   250
 251  RDPYSYSQTADQHTPSYYNGGSYTSPRGPSYNRPRSPLSHSHQNPPAGSL   300
 301  SPPGQQPLLASPSVRHGTTANMNPTTNGASAIPPFKSDLAAPSPPKPAPS   350
 351  STTSRANPMSFDSILSSSEPAPKPKEPSPIIAREPEIKEEREPRRDRESK   400
 401  RDSREPKQTKRSLEPELDHDTEVEKDVETEPEPLPSREKEKEPAPKKRGA   450
 451  RKSTKGRASDIRDAATPKNGRRLSVKKESPTPRLPAKRQANGQPKPKTWS   500
 501  AEMEKKIQNAESDIENRAANLDADEFDEQQYKERAQKRRRVMSELDVEYG   550
 551  LSRRDALANTISKKLVLHAELGKRRYDDVFYDEALHEVREQEVYAEKERK   600
 601  KDMQRKRRREKSMAVTMEQKEAALARAEAAEDETERQKHLRDAERASKKA   650
 651  QQTKLILQKGIKGPARNLEINLEGGTMSSFQASDVESGEAGTPSGKRKGK   700
 701  GRSGPRLKKSKEQKQAEKDSAEAAQAALDAGEELPTKEENRVRIKIKKTK   750
 751  KDVAVDSEKDKDEAEKTEEEVVEKKTKKSKDKDKEKVDDIPDNEKRFMSK   800
 801  GYNQIYDQIWRDMARKDVNKTFKLAVDSYATKASNLKKTAILASKEAKRW   850
 851  QLRTNKGTKDLQARAKRVMRDMMGFWKRNEREERDLRKAAEKQEIENARK   900
 901  EEADREAARQKRKLNFLISQTELYSHFIGKKIKTDEVERSTDNPEIAKDA   950
 951  HQTDQKMLDIDEPTGPVIGKVTNFENLDFEEGSDEALRAAAMANAQNAIA  1000
1001  EAQKKARDFNNQGLDMDDEGEMNFQNPTGLGDVEIEQPKLINAQLKEYQL  1050
1051  KGLNWLVNLYEQGINGILADEMGLGKTVQSISVMAYLAEKHDIWGPFLVV  1100
1101  APASTLHNWQQEIAKFVPEFKILPYWGGASDRKVLRKFWDRKHTTYRKDA  1150
1151  PFHVCVTSYQLVVSDVAYFQKMRWQYMILDEAQAIKSSQSSRWKALLNFH  1200
1201  CRNRLLLTGTPIQNNMQELWALLHFIMPSLFDSHDEFSEWFSKDIESHAQ  1250
1251  SNTKLNEDQLKRLHMILKPFMLRRVKKHVQKELGDKIELDIFCDLTYRQR  1300
1301  AYYSNLRNQINIMDLVEKATMGDDQDSGTLMNLVMQFRKVCNHPDLFERA  1350
1351  EVNSPFACAYFAETASFVREGNDVAVGYSSRNLIEYELPRLVWRDGGRVH  1400
1401  KAGPDSQVAGWKNRTLNHLMNIWSPDNIRDSSDGSKAFSWLRFADTSPNE  1450
1451  AYQATHQSLIARAAKELQKRDRLGYMNVAYSDTEDANFTPAHALFQIRPR  1500
1501  QNRKPLADITNEGILSRLMNVAQGDYDESGLGRLEPAGRPRASAPPIQVS  1550
1551  CRSWASEFERSEVLFNAPIRKILYGPTVFEEKALVEKKLPMELWPTRQML  1600
1601  PKPDHEKKGFTNISIPSMQRFVTDSGKLAKLDDLLFKLKSEGHRVLLYFQ  1650
1651  MTRMIDMMEEYLTYRNYKYCRLDGSTKLEDRRDTVHDFQTRPEIFIFLLS  1700
1701  TRAGGLGINLTTADTVIFYDSDWNPTIDSQAMDRAHRLGQTKQVTVYRLI  1750
1751  TRGTIEERIRKRAMQKEEVQRVVIQGGGASVDFSGRRAPENRNRDIAMWL  1800
1801  ADDEQAEMIERREKELLESGELEKQQKKKGGKRRKAENSASLDEMYHEGE  1850
1851  GNFDDGSKGVSGTATPATAATPADSDSKGKKGRKGTKRAKTAKQRLAIAD  1900
1901  GMME                                                1904
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold.  Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus.  Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them).  The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation).  Another benchmark is available in the Bioinformatics 2007 paper. | 
| NucPred score threshold |  Specificity |  Sensitivity | 
 | see above |  fraction of proteins predicted to be nuclear that actually are nuclear |  fraction of true nuclear proteins that are predicted (coverage) | 
 | 0.10 |  0.45 |  0.88 | 
 | 0.20 |  0.52 |  0.83 | 
 | 0.30 |  0.57 |  0.77 | 
 | 0.40 |  0.63 |  0.69 | 
 | 0.50 |  0.70 |  0.62 | 
 | 0.60 |  0.71 |  0.53 | 
 | 0.70 |  0.81 |  0.44 | 
 | 0.80 |  0.84 |  0.32 | 
 | 0.90 |  0.88 |  0.21 | 
 | 1.00 |  1.00 |  0.02 | 
| Sequences which score >= 0.8 with NucPred and which
                are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%.  (PredictNLS by itself is 87% correct with 26% coverage on the same data.) | 
Go back to the NucPred Home Page.