SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q4PGG5 from www.uniprot.org...

The NucPred score for your sequence is 0.93 (see score help below)

   1  MTTQSSAGPQSQPSRDFFASSPSATPGSPSKQASQASKQPDALVTPSSVT    50
51 ANTSVCADNLLDHHQHEPQHDAASVVIGIEGSINDSAAIHRRRQQPRRAA 100
101 VQNAKPLFLAEDEDDAINWPVADQEEGDDFFSTQLADQKVKRPARATVNS 150
151 DEKDFQPSTLSSLSSPPSETVYKRSPPSDDVQASNGPAKRPKKSWSTPAS 200
201 VATTKSAPRHCSPTPDPRLRHDAFDRRYIGTFVLSAWSLSKGSSYVKPGD 250
251 AVRIFRPRKKHATAEPKIASKLTNGGMQKAKQTTLNFRGASAGPTNFFTS 300
301 KQKSKEKEHFIVRFSNMRGFEVGRLPLEVAIWMSKLIDAGIAEFEGVVVD 350
351 CPPSLTVGCDIILQVKAYIKFDAFFSTLLGSREFDDQNEALRPETAESDL 400
401 EKTLRERKISLLRMFRVCDLKPRLSNAILKSHKASDDFSSEAMLDQYGGD 450
451 IQGAVKHAGSDLAISTENGTQLPHAGEDASSTAIDLDVEGDTDAVAHLEI 500
501 ADQLQSAKRQTDGDADTEENDGTELNLNQLDQVYRKAQANDAHLPEVEPP 550
551 ESFVLTLRPYQKQALGWMKNMEMAPGQSSSSQEQSVTQQGNGDTGERNVS 600
601 LHPLWEEYEFPLDYDNPQANERLILSATRLFYFNPYTGDLSLDFQRASKG 650
651 SRGGILADEMGLGKTIMVASLLHANRTSDPGEESEGEINAVDAAEGDVST 700
701 KRKGSAKQTSLASAFAASTSSVDQRKALLKASVSKGKASLVVAPMSLIGQ 750
751 WRDELIRASAPGSLTPVLYYADTKGDLLAQLESGKVDVVITSYGTLVTEY 800
801 RRFLDGGGASNRHLSVSAPLYCIDWLRVILDEAHNIKNRSTMNARACCDL 850
851 VSRRRWALTGTPIINRLTDLFSLLKFLRVEPWGDFSFFNSFVCKPFQAKS 900
901 TKALDVVQVILESVLLRREKKMKDKDGKPIVELPPKTIVVKELEFSELER 950
951 RIYDNVYRRAYLQFASLKANGTVTRNLSVIFSVLMRLRQAVCHPSLVLKA 1000
1001 GSKVQSGGIRKDHVDRNGEVGVGEGDHVEVDADAVEFGLDSDHVGGNGTP 1050
1051 STQDLRELVAQFQLDEAGEAGDDSTESYTKATVERLIGEMHGDQATVPPV 1100
1101 VSDGENECPICLEESQISPCYLPRCMHSACKACLVDYLGQCKQKGDQGAC 1150
1151 PTCRKGPVQETDLIEAIRTRPATRAASGGASPTDRPGKACTLTSVPSVIY 1200
1201 VRNNLRTSTKLSALISHLNTLRATEAAFKGVIFSQFTSFLDLIEPVLTRY 1250
1251 RFHFLRLDGSTPQKVRDKLVLEFQSPSPTNHVVLFLISLKAGGVGLNLTA 1300
1301 ANKIWLLDFWWNSSIENQAIDRIHRFGQTSPVSVFRYIIKDSIEDRILLI 1350
1351 QKRKDMLIKHALNTDNHPHGTKPNSEMLANLDLLFGE 1387

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.