  |  Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. | 
NucPred
Fetching  Q4PGL2  from www.uniprot.org...
The NucPred score for your sequence is 0.99 (see score help below)
   1  MSGEDRGAPYRYAGERPPAYPADGYASYQRGLKSSIPSRSYDTAYPEQGY    50
  51  DRHLRERVHPAYTTGPSYGVPPPPPTDYRRPPPQAAYRYEEDYHHRRAPA   100
 101  QPHLEYAPEHRRQPVHSDAYREADDRRSFEQARSDPYASPSRHAYQDSYR   150
 151  SELPHERRHAPAAYERISVRDDARSAPENRHIDEPAVYRRDEYDAHSREI   200
 201  QPSYRRGAHRSPRLSPQPVVSAHERSSEYATRDYSASAARYAEPVHQPES   250
 251  PPRPSMSIFNMLNDRSANGAVESVHSSPTKSSIAAEHESYPTTAQEPSHA   300
 301  SRAAFDPAREQSYSTARDSQAYSRGSEARAGAARVNYTVHPEDEAAISQR   350
 351  RNSSAHQQSSIKSVRHPANAVDEPLIRVKHEEATSASLDAQMSAEPPVSH   400
 401  TLNNGERLSAQDAKVATEDSSLAANGNGKVDSAGGTARPAPAKTQLKLRN   450
 451  NPLPASKSNSSFVAPPPPAKKNRDPDGWESDLSNEENQPFWQTELDDYIF   500
 501  DVRERQRLIEDAFVASMREKHVEVERRLARAYEGRYFAVIRQIRLREQQE   550
 551  ASQRDMERRQDHVRQQRDHEIDLELLGTLSDGQQNMGTRKKKGGRGTDDD   600
 601  GLLQADDDDDDDSDDVALADLAARNGSKSNIIKLKRSKGKPAAADPRNKK   650
 651  RRLENGAALSPAPGSEVDSTLADFGGNFDGDDSAFASHQASPTPDDVSFA   700
 701  LDVDASGKVPIDARRAQQLEDAHRRIWTTIAKRDVPKVYRTVLQSASSKT   750
 751  MYWRRISSVVQREAKRGAARNNKTVKDVQLRARKVMREVLVFWKRNEKEE   800
 801  RELRKKAEREALEKAKKEEEMREAKRQARKLNFLISQTELYSHFVGSKLK   850
 851  TAEAEESEETAGSSKIIDPNAQPSDATVLPINPHSELADAEARLAELDDI   900
 901  DFDDEDESNLRAHAARNAQEAVRLAKEKAQAFDVAAAEERRRNEAAARER   950
 951  EGLDAGPVKQIEEKDLGKAFDSDDMNFLNPTSMGQTEIKQPKMLTCQLKE  1000
1001  YQLKGLNWLANLYEQGINGILADEMGLGKTVQSISLMAYLAEVHDIWGPF  1050
1051  LVIAPASTLHNWQQEISKFVPTLKALPYWGNVKDRAVLRKFWNRKQISYN  1100
1101  RDAPFHVLVTSYQLVVSDEKYFQRVKWQYMILDEAQAIKSSSSIRWKTLL  1150
1151  GFNCRNRLLLTGTPVQNSMQELWALLHFIMPSLFDSHDEFSEWFSKDIES  1200
1201  HAEQKGTLNEHQLRRLHMILKPFMLRRIKKNVQNELGDKIEIDVFCDLSA  1250
1251  RQKMLYRGLRANISVAELMDRATSNDEAGLKSLMNLVMQFRKVCNHPELF  1300
1301  ERADVRAPFALADFARSGSLAREGDLLNLPDSTTSLIELQVPKLLVREGG  1350
1351  IFDIPGHNSRKGFDTGYLQNLFNIWRAPHIHESLQEERSTFASLPLIGVS  1400
1401  PSEAQKTFHSTGIKRILAAAAEERHWRSLEAFASDDTFAAASVRPLAKML  1450
1451  RPMPTTSGRSPSVLMPLEEVAADYRRHSYLAKDSARAVVAPAVAPPIKLY  1500
1501  SNDGPFMQAQERFSRDAQVSVTLFGLSPEGRESVKRVEELQSELPEVPPQ  1550
1551  GVMRDSSIDQLPYNGMQVPQMNKLIVDSSKLAKLDVLLRELKANGHRVLI  1600
1601  YFQMTRMIDLMEEYLIYRQYKYLRLDGASKISDRRDMVTDWQTKPELFIF  1650
1651  LLSTRAGGLGINLTAADTVIFYDHDWNPSNDSQAMDRAHRLGQTKQVTVY  1700
1701  RLITKGTIDERIVRLARNKKEVQDIVVGTKAYSETGMAKPQEIVSLLLDD  1750
1751  DELAESMLRKKQAEEAQTAQEKADLARASHAKRRLNKDRAAAAVESPAPV  1800
1801  GSTWSLEDDEDDFFGARPPSKADTDTAETTPQLQSKKRSVGGGGGGSGGA  1850
1851  KRGRISEVASPRMTPLSLDDGALMASGEQLASPSKGAAAKRKSKSHRKKT  1900
1901  VDELAGVDLD                                          1910
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold.  Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus.  Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them).  The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation).  Another benchmark is available in the Bioinformatics 2007 paper. | 
| NucPred score threshold |  Specificity |  Sensitivity | 
 | see above |  fraction of proteins predicted to be nuclear that actually are nuclear |  fraction of true nuclear proteins that are predicted (coverage) | 
 | 0.10 |  0.45 |  0.88 | 
 | 0.20 |  0.52 |  0.83 | 
 | 0.30 |  0.57 |  0.77 | 
 | 0.40 |  0.63 |  0.69 | 
 | 0.50 |  0.70 |  0.62 | 
 | 0.60 |  0.71 |  0.53 | 
 | 0.70 |  0.81 |  0.44 | 
 | 0.80 |  0.84 |  0.32 | 
 | 0.90 |  0.88 |  0.21 | 
 | 1.00 |  1.00 |  0.02 | 
| Sequences which score >= 0.8 with NucPred and which
                are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%.  (PredictNLS by itself is 87% correct with 26% coverage on the same data.) | 
Go back to the NucPred Home Page.