| Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q4QR29 from www.uniprot.org...
The NucPred score for your sequence is 0.97 (see score help below)
1 MSRGSIEIPLRDTDEVIELDFDQLPEGDEVISILKQEHTQLHIWIALALE 50
51 YFKQGKTEDFVKLLEAARIDGNLDYRDHEKDQMTCLDTLAAYYVQQARKE 100
101 KNKDNKKELITQATLLYTMADKIIMYDQNHLLGRACFCLLEGDKMDQADA 150
151 QFHFVLNQSPNNIPALLGKACISFNKKDYRGALAYYKKALRTNPGCPAGV 200
201 RLGMGHCFVKLNKLDKARLAFGRALDLNPTCVGALVGLAVLELNNKEADS 250
251 IKNGVQLLSKAYTIDPSNPMVLNHLANHFFFKKDYSKVQHLALHAFHNTE 300
301 VEAMQAESCYQLARSFHVQEDYDQAFQYYYQATQFAAASFVLPFFGLGQM 350
351 YIYRGDKENASQCFEKVLKAYPNNYETMKILGSLYAASDDQEKRDIAKSH 400
401 LKKVTEQYPDDVEAWIELAQILEQTDIQNALSAYGTATRILQEKVQADVP 450
451 PEILNNVGALHFRLGNLGEAKKYFLASLDRAKAEAEHDEHYYNSISVTTS 500
501 YNLARLYEGLCEFHESEKLYKNILREHPNYVDCYLRLGAMARDKGNFYEA 550
551 SDWFKEALQINQDHPDAWSLIGNLHLAKQEWGPGQKKFERILKQPSTQND 600
601 TYSMLALGNVWLQTLHQPTRDREKEKRHQDRALAIYKQVLRNDSKNLFAA 650
651 NGIGAVLAHKGYVREARDVFAQVREATADISDVWLNLAHIYVEQKQYISA 700
701 VQMYENCLRKFYKHQNTEVLLYLARALFKCGKLQECKQILLKARHVAPND 750
751 TVLMFNVALVLQRLATLVLKDEKSNLKAVLNAVKELELAHRYFNYLSKVG 800
801 DKMRFDLALATSEARQCSDLLSQAQYHVARARKQDEEEKEMRTKQEQEKE 850
851 VLRQKLLKEQEEKHLREIEEQKKLLEQRAQYLEKTRNLLSFTGEMETPKE 900
901 KKQRGGGGRRSKKNGEFEEFVNDDSDEELAPRKKKRKKGGSSSGEQGEGG 950
951 DEGEGGEKKKKKRRKRPQKAAGSDDDEEQTPQSKKRQPKKKEKPAKLERT 1000
1001 PPSMKGKIKSKAIISSSEDDSDEDKLKIADEGHARDSDSDDGPRKSQKRV 1050
1051 ISDSDSDNGNKSGSDAGSPQKSQRSDEDSDNAFARKRRRQISGSDNDSAQ 1100
1101 SRRSSGGSDNESRAASNSAESERGSDRGSDNEGSERASGNQSEQEVEKSE 1150
1151 RGSDESD 1157
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.