SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q4WWH6 from www.uniprot.org...

The NucPred score for your sequence is 0.80 (see score help below)

   1  MSARDFVEGEAVLDDEENENEEEQEEDYDGEVHEGAGTMNHYNDSSEEEE    50
51 EDDDDEEAARAIREGFIVDEDEEIEERAERRREKRKRRREEREREDEHLD 100
101 EEDLELIGELNPAFQSAAATESKFKRLKRGHKDHRQASQGIDDIFNSDED 150
151 EEAAGDYGRPSHRRPMHDEMKDFIEEDVFTDDELEREREDLEIARPAKRG 200
201 VTGLGATDAAGLDENALEDMRAAFGDGNEYLFALEMEEQEEEQEEDQEKH 250
251 LDLKDVFEPSQLAERMLTEEDNQIRLLDEPERHQLARKPYRNLVLTEEQF 300
301 REEAAWIANLMLLKKRIEPELREPFQRSVAKVLEFLVTDDWEVPFIFQHR 350
351 KDYMIHATKVPVAGAPADGDTSQYTIKAEKLLNMTDLWDIFDHDLKFRAL 400
401 VEKRNTIQKTYDNLQSLFNVNDSVVQDMLSTAVTMEELQDVQDYVHFQYA 450
451 SQLRDINLMNGEANGDTHRRKATGRSFFERVRNGKAYGLVRAFGITADAF 500
501 AQNALKEGRRQYTEDPAERPEEMADSFIDNDFSNASHVLKAAKALFAEEI 550
551 VMSPKMRKVIRQAYYMNGAVDCFRTEKGLRRIDEQHPYYEFKYLRNQQLS 600
601 DIARQPELYLRMLKAEEEGLVEVKVRFENFDHFRQRLYPDIESDNYSEIA 650
651 DAWNRTRREVLDMALGKLERLINRSVKENIRQECENHVAKECREAFSQRL 700
701 DQAPYKPKGMVLGTVPRVLAMSTGTGIVGRDPIHWAYVEEDGRVLENGKF 750
751 VDLSIGDRDRSIPDGKDVEALIELLERRRPDVIGVSGMSPETRKLYKLLT 800
801 ELVEKKDLRGATYTDERDEEISDPLEVVIVNDEVARLYQHSERAKKDHPS 850
851 FGPLTHYCVALAKYLQSPLKEYASLGRDIVSIQFKRGQQLVAQELLLKQL 900
901 ETALVDMVNLVGVDINEAVTDPATANLLPYVCGLGPRKAAHLLKIVNMNG 950
951 GVVNNRVELLGVNAQYPAMGVKVWNNCASFLFIDFENADPDADPLDNTRV 1000
1001 HPEDYDIARKMAADALELDEEDIKAETDENGPGAIVRKLFRDEAQDRVND 1050
1051 LILEEYAEQLEKNLNQRKRATLETIRAELQQPYEELRKQFALLSTDDVFT 1100
1101 MLTGETSDTLAEGMVVPISIKRITDDHIDGKLDCGVDVLVPESELTDRYD 1150
1151 IPVRALYSLHQTLPAKVLFLNKKNFLCNVSLREEQVSRPTPRPRDHMRGE 1200
1201 WDDRQEAKDREMLQEKTQSGGRVMRVIKHPLFRPFNSTQAEEFLGSQSRG 1250
1251 DVVIRPSSKGPDHLAVTWKVADGIFQHIDVLELDKENEFSVGRTLKVGGR 1300
1301 YTYSDLDDLIFNHVKAMAKKVDEMMLHEKYQEGSKDATYSWLNTYTKANP 1350
1351 RRSAYAFCIDPKHPGYFQLCFKAGENAQLHSWPVKVIPQGYELQRNPYPD 1400
1401 MRALCNGFKLLFTNMQAGKR 1420

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.