| Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q5ARK3 from www.uniprot.org...
The NucPred score for your sequence is 1.00 (see score help below)
1 MQNGTTIGIPPENERVTERAEPVPSDLLPNNSPVNSPTIDPTLSEIKDVA 50
51 ADHNEEPPSKRRKVAGSTPSRRSHSRAASPPWKKAGADGPTSKIVDGKRR 100
101 STRVSNVGPVEQPPSDAKPTRSSQKQYVSKAVSSQRNAAVSSPLPMSPSR 150
151 SGINRRSLAGVAVNGSPSTTAKGSIGRRRRESPSPVSKRASTRTRPDNMD 200
201 AYHPSNGVTPRSNSTKTRSTRSFQLASSDFREETADDIGNDGQDEHGQRI 250
251 QRLRIKVKKPALSIQHPSHVLPTRKYGSFKEWLENEGTGPGRMLTMTDAL 300
301 EEAQKRRQVTEAMEPGGLLSSEVCSAFLPEPQEELPQQFSHQDHLVAHAL 350
351 YFKKLLDKEHRAHRQAAKSLAAACAEVWRKRNKDPEDILREQQEEMRGKR 400
401 KQLAKDLKKMFELARAEIDRVRLARWEEEQKAKDQRALDRAIKQSTMLFE 450
451 KRRLEILGETGSDAPETTTDDEEVETDNGSENDDEEGESNMSTETEEEDG 500
501 DDRDDDVGLTAEELRLKYANLPDTNPHPDQSPYSDEDSEDSDDIAADNTP 550
551 GDTSGGVNRSPPPDSSGQVELDEVDPVLIDDSDESTDMDDDMGDSDDDGY 600
601 SEAESDDEDGGEPGLLGFFSAKDLSLSNLHQTNSGEGDTHQTGADGDRNE 650
651 DSSFDESEFGSEDPDEVTLVPTGPTNKDLSTPATVTASAELEPAAMTPSI 700
701 DQTSTEEPIAIGTETPIETVAEDAAALADTEPVDVDVLDTSTNDSVPPVM 750
751 SPATNLLKQIERQQHEPYHSRAASSEASPGTVATKPSEPESVSSIEAPAE 800
801 KHAQPSESPGPGLKTPIPHLLRGTLREYQHFGLDWLAGLYSNHINGILAD 850
851 EMGLGKTIQTIALLAHLAVEHGVWGPHLVVVPTSVILNWEMEFKKWCPGF 900
901 KIMTYYGNQEERRQKRRGWMDDNSWNVLITSYQLVLQDQQVLKRRSWHYM 950
951 ILDEAHNIKNFRSQRWQALLTFRTRARLLLTGTPLQNNLTELWSLLFFLM 1000
1001 PTDGDEAGIEGFADLRNFSEWFRRPVEQILEHGRETMDDEAKQVVTKLHT 1050
1051 VLRPYILRRLKADVEKQMPGKYEHVVYCRLSKRQRYLYDGFMSRAQTKET 1100
1101 LASGNYLSIINCLMQLRKVCNHPDLFETRPISTSFAMPRSVATEFETSEA 1150
1151 LVRRRLLYQHPLEKLDLDFLNLVPISREDISRRLADDSARIMAYAPFNTL 1200
1201 RERQYHRTNWEMKFNGSTVQSTLEALENDCRKRRMAELERSLYFESKRHG 1250
1251 RRPVYGSSLIEFLTADSKQRPTAHGPLRKRSYADWLSSQSSVLASMMMSL 1300
1301 EERSQAMDGYIQRFACVTPAAVAAGVTEAALTPISTRHLTNKERFPPHDP 1350
1351 FHEAQMRLSIAFPDKRLLQYDCGKLQRLDKLLRDLKAGGHRALIFTQMTK 1400
1401 MLDVLEQFLNIHGHRYLRLDGTTKVEQRQILTDRFNNDNRILAFILSSRS 1450
1451 GGLGINLTGADTVIFYDLDWNPAMDKQCQDRCHRIGQTRDVHIYRFVSEY 1500
1501 TIESNILRKANQKRMLDDVVIQEGEFTTDYFTKLDVRDMIGNDEALKDEA 1550
1551 SAAMDRVLENRVTNTSRVFEQAEDKEDIDAAKNAQKELEHADDGDFDDRA 1600
1601 NANASGVTAASASASGAGQTPTQAGTPLPDEAQQSLNANNAEVAEDTADS 1650
1651 DPSVGHIDDYLLRFMEWNMKDEPLVLPVDKSMKKSKKGKEHRLRKRRR 1698
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.