 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q5BHE2 from www.uniprot.org...
The NucPred score for your sequence is 0.75 (see score help below)
1 MKGEITLDGAIALLSSDKTKDRTDGLADLKHILQKNKRNSNLQSMSDKAC 50
51 HKIFESLFRLVSTEKTFYNRANSKGASSSKAAATRLSACASVVRTAVETF 100
101 LRNLRIKSVRAILDHITNVLVSPDSSLFELLSVDYTKCLSTILHYPPHVE 150
151 HLGVEEWESVLKFCLKVVNVRNDHNSQQSTWSPHSSVMDDYIGASGGRST 200
201 PSRMTPSLAVREKPKGPTGVVEEALSCIKILSGVPNAPLQDNAESILLGL 250
251 ASYVGSPSLSGSGHQTAFSAINAVAMGIIFDNSELVRVTLLDLVPVIRQH 300
301 WTTKLMGLKDELLVTTMLIVTFLIDEIRRKPDEALIAVIDGLIHTLQREY 350
351 FRRSEKDILQVDELVFDTNSIGQHEKFRLWPRLESPRSEHNWTVVWIMAR 400
401 LLELSEELTTRLSTHCPPEAETPSKRQRISSKIDDVFRDSTASFGIRRVC 450
451 ALQLIPFLLNHYACIDSKVSLLERLIPNINDDNATISSWTMIAIACIAAS 500
501 PQADKPPLKRYWQQAWDLTSRASTSQLTSRAACYLQNSILQYSLLDYAAV 550
551 AETINSMLSFVRLNGPSTVSDASLELWASVIRMTAQINPGSVSNASVQIC 600
601 ELVDIYDIWDAETTVSIQKSSQSDPNDLGILDLLQAKSESFLHTWQSLSE 650
651 DKSRHVTPDIVQILTSFCITVALYTSCLPEQPGPRLQTLLSNSRPTAIHR 700
701 ALYGLLTPLSEVLESQRQSHKQRLYALNDDTMDLDDPFGPSTDQVEEASN 750
751 ILCTNRSDLPLFQDSASFHRYMTILISIYNRMYSQQSEPQQHVTRALEDY 800
801 LNDLDEVDLLAAHDLLPYVYQSCARTDRQTQLVLLENLGEKCLQTYELER 850
851 CENSHLLCIQMMCSLAMSWTRGTQDSLSDSAADIYTWFTTIFLKKGRASS 900
901 SVLIAFAKLLGVILSLNPAYSSDQSSPSPKTTLFKIISDGEVLVKFNAGS 950
951 LVPQLFGQFLLEDHDNVFNDVLECLPRDPTWEEGIAVRLFLLAQLASKWH 1000
1001 TLLRRSIYHIFETPAQVHHSLWYAEKCLRSVSDALGLQDAKEIFRLFSSQ 1050
1051 ILYTWTETQSIKSMPFSIFGYANLNDMICDAQDEIVGQIMMRASESDAAE 1100
1101 LSEILGRPFVGLLTDSFYKAEAYTIAHDISTPPREGSQPKGVENRLKKIL 1150
1151 GAEVFVTLIEAQFPQIVATFFGSLDFFQQVEKAFSKRESFQEALVTLKRI 1200
1201 TEKGAARTVLPPNQQPSFRARYLLDELEFLCKRSGYELETIWTPTLASYV 1250
1251 CRTLLESIHPALGSLHACSVLRKIKILICVAGPVMLSDYPFEMIIHGLQP 1300
1301 FLVDISCSEDAVAIFWYLLEAGKTYLCEQPGLMAGIAVSTSLSLGRFLAS 1350
1351 PPVNSRQESQLQAVVGNLRTFCRWFDGYLRSYTSPALDDESSRSFRRFTC 1400
1401 SLQTIVEQESSGSGANETDLLLEVLKDRESKSGLLSKPISDRVISLLCST 1450
1451 SKAALGYHLTTIERDEDAILNAVTVCQTLRDFNPGTEYRSWAARVIGRAF 1500
1501 AATGKISDALLREQDLTLFRSSSTQSGTDILCRSKANILEVLGSKLLNSR 1550
1551 QTGPIERTLQLIISNLANFPDFEPCVSAISPSVMKALTWSPYQCPGISLN 1600
1601 ALEAKELENVHGWDLSLSPSYWARNVGLFLSKAAAEDPVIGSLSNILYLI 1650
1651 PDLAVQLLPYILHDALLAEIRGKVAEVRDSISQIFNETLRAGAENSIPHA 1700
1701 RLIIKCVLYLRNQPKPGEETIVDRDDWLDINYAVASSAASRCRLPKTALM 1750
1751 FLETHVSRCTASSRRSSVAKYDLPAGLLHDIFKNIDDPDFFYGVQQTSSL 1800
1801 DSVIETLEHESSGFKNLLFQSAQYDSEIQMTGSGNAYGVLKALNSTNLQG 1850
1851 IANSMIGALGNSSDTAVPLGSMLKAATNLRQWEIPISPLNTSPPATIFRA 1900
1901 FQALNTPGPLVDMRASIGESYRSNLNLINSDRRSATSLRTAMRTLGILTE 1950
1951 IEEVLGSGSAAEIDQKWEEISARTSWLKNTDVQEVGEILSSHETLFSSIK 2000
2001 QKDYLRSAFNLSDIDAQLLEVKVIRQSLHIARNHGIAQASLRSAVYLSKL 2050
2051 ANHSVSLGLNIEGVAKFDLANVLWDQGEMAPSIQILQQLKDRNDLHKQAI 2100
2101 PISRAELLVTLSQGHHIAEARLEKPEAIIQNYLTPAVKELKGRSEGEDAG 2150
2151 RVYHGFAIFCDQQLQNPDGLEDFARIEQLRNRKEKEVVALDAMLKTAEGK 2200
2201 ERDNLKFHRTKTKQWFDLDDREYQRLKRSREAFLQQCLENYLICLRESEA 2250
2251 YNNDVLRFCALWLAQSHSDIANSAVSKYIAGVPSRKFAPLMNQLTSRLLD 2300
2301 VSDDFQALLSELIYRICSDHPFHGMYQIFASSKSKGGRDQSALSRNRAAA 2350
2351 KLADIMRNDRHIGPLWVAVHNTNINYVRFAVERLDDKAKSGAKIRLNKLA 2400
2401 PGIRLEQDAVNQRLPPPTMKIDIRVDCDYSDVPKLAKYLPDFTVASGVSA 2450
2451 PKIVTAIASNGVRYKQLFKGGNDDLRQDAIMEQVFEQVSSLLKDHQATRQ 2500
2501 RNLGIRAYKVLPLTSNAGIIEFVPNTIPLNDFLMPAHQRYYPRDMKPSAC 2550
2551 RKHIADVQTRSFEQRVRTYRQVIEKFHPVMRYFFMEKFNNPDDWFGRRLS 2600
2601 YTQSTAAISILGHVLGLGDRHGHNILLDERTGEVVHIDLGVAFEQGRVLP 2650
2651 VPEVVPFRLTRDLVDGMGITKTEGVFRRCCEFTLEALRQESYSIMTILDV 2700
2701 LRYDPLYSWTVSPLRMKKMQEQDTSDGPPVLPGSTTDQQRPTNEPSEADR 2750
2751 ALTVVAKKLSKTLSVTATVNELIQQATDEKNLAVLYCGWAAYA 2793
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.