 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q5JPB2 from www.uniprot.org...
The NucPred score for your sequence is 0.84 (see score help below)
1 MEVPEPTCPAPPARDQPAPTPGPPGAPGGQASPHLTLGPVLLPPEQGLAP 50
51 PTVFLKALPIPLYHTVPPGGLQPRAPLVTGSLDGGNVPFILSPVLQPEGP 100
101 GPTQVGKPAAPTLTVNIVGTLPVLSPGLGPTLGSPGKVRNAGKYLCPHCG 150
151 RDCLKPSVLEKHIRSHTGERPFPCATCGIAFKTQSNLYKHRRTQTHLNNS 200
201 RLSSESEGAGGGLLEEGDKAGEPPRPEGRGESRCQGMHEGASERPLSPGA 250
251 HVPLLAKNLDVRTEAAPCPGSAFADREAPWDSAPMASPGLPAASTQPWRK 300
301 LPEQKSPTAGKPCALQRQQATAAEKPWDAKAPEGRLRKCESTDSGYLSRS 350
351 DSAEQPHAPCSPLHSLSEHSAESEGEGGPGPGPGVAGAEPGAREAGLELE 400
401 KKRLEERIAQLISHNQAVVDDAQLDNVRPRKTGLSKQGSIDLPTPYTYKD 450
451 SFHFDIRALEPGRRRAPGPVRSTWTPPDKSRPLFFHSVPTQLSTTVECVP 500
501 VTRSNSLPFVEGSRTWLEPREPRDPWSRTQKPLSPRPGPARLGCRSGLSS 550
551 TDVPSGHPRALVRQAAVEDLPGTPIGDALVPAEDTDAKRTAAREAMAGKG 600
601 RAGGRKCGQRRLKMFSQEKWQVYGDETFKRIYQKMKASPHGGKKAREVGM 650
651 GSGAELGFPLQKEAAGSSGTVPTQDRRTPVHEDISAGATPEPWGNPPALE 700
701 ASLVTEPTKHGETVARRGDSDRPRVEEAVSSPALGGRDSPCSGSRSPLVS 750
751 PNGRLELGWQMPPAPGPLKGGDVEAPRPVWPDPKLEGGARGVGDVQETCL 800
801 WAQTVLRWPSRGSGEDKLPSERKKLKVEDLHSWKQPEPVSAETPGGPTQP 850
851 ASLSSQKQDADPGEVPGGSKESARQVGEPLESSGASLAAASVALKRVGPR 900
901 DKATPLHPAAPAPAEHPSLATPPQAPRVLSALADNAFSPKYLLRLPQAET 950
951 PLPLPIPWGPRHSQDSLCSSGWPEERASFVGSGLGTPLSPSPASGPSPGE 1000
1001 ADSILEDPSCSRPQDGRKGAQLGGDKGDRMATSRPAARELPISAPGAPRE 1050
1051 ATSSPPTPTCEAHLVQDMEGDSHRIHRLCMGSTLARARLSGDVLNPWVPN 1100
1101 WELGEPPGNAPEDPSSGPLVGPDPCSPLQPGSFLTALTRPQGVPPGWPEL 1150
1151 ALSSHSGTSRSHSTRSPHSTQNPFPSLKAEPRLTWCCLSRSVPLPAEQKA 1200
1201 KAASVYLAVHFPGSSLRDEGPNGPPGSNGGWTWTSPGEGGPAQMSKFSYP 1250
1251 TVPGVMPQHQVSEPEWKKGLPWRAKMSRGNSKQRKLKINPKRYKGNFLQS 1300
1301 CVQLRASRLRTPTWVRRRSRHPPALEGLKPCRTPGQTSSEIAGLNLQEEP 1350
1351 SCATSESPPCCGKEEKKEGDCRQTLGTLSLGTSSRIVREMDKRTVKDISP 1400
1401 SAGEHGDCTTHSTAATSGLSLQSDTCLAVVNDVPLPPGKGLDLGLLETQL 1450
1451 LASQDSVSTDPKPYIFSDAQRPSSFGSKGTFPHHDIATSVAAVCISLPVR 1500
1501 TDHIAQEIHSAESRDHSQTAGRTLTSSSPDSKVTEEGRAQTLLPGRPSSG 1550
1551 QRISDSVPLESTEKTHLEIPASGPSSASSHHKEGRHKTFFPSRGQYGCGE 1600
1601 MTVPCPSLGSDGRKRQVSGLITRKDSVVPSKPEQPIEIPEAPSKSLKKRS 1650
1651 LEGMRKQTRVEFSDTSSDDEDRLVIEI 1677
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.