 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q5SVZ6 from www.uniprot.org...
The NucPred score for your sequence is 0.91 (see score help below)
1 MKEPLLGGECDKAVASQLGLLDEIKTEPDNAQEYCHRQQSRTQENELKIN 50
51 AVFSESASQLTAGIQLSLASSGVNKMLPSVSTTAIQVSCAGCKKILQKGQ 100
101 TAYQRKGSAQLFCSIPCITEYISSASSPVPSKRTCSNCSKDILNPKDVIS 150
151 VQLEDTTSCKTFCSLSCLSSYEEKRKPFVTICTNSILTKCSMCQKTAIIQ 200
201 YEVKYQNVKHNLCSNACLSKFHSANNFIMNCCENCGTYCYTSSSLSHILQ 250
251 MEGQSHYFNSSKSITAYKQKPAKPLISVPCKPLKPSDEMIETTSDLGKTE 300
301 LFCSINCFSAYSKAKMESSSVSVVSVVHDTSTELLSPKKDTTPVISNIVS 350
351 LADTDVALPIMNTDVLQDTVSSVTATADVIVDLSKSSPSEPSNAVASSST 400
401 EQPSVSPSSSVFSQHAIGSSTEVQKDNMKSMKISDELCHPKCTSKVQKVK 450
451 GKSRSIKKSCCADFECLENSKKDVAFCYSCQLFCQKYFSCGRESFATHGT 500
501 SNWKKTLEKFRKHEKSEMHLKSLEFWREYQFCDGAVSDDLSIHSKQIEGN 550
551 KKYLKLIIENILFLGKQCLPLRGNDQSVSSVNKGNFLELLEMRAKDKGEE 600
601 TFRLMNSQVDFYNSTQIQSDIIEIIKTEMLQDIVNEINDSSAFSIICDET 650
651 INSAMKEQLSICVRYPQKSSKAILIKERFLGFVDTEEMTGTHLHRTIKTY 700
701 LQQIGVDMDKIHGQAYDSTTNLKIKFNKIAAEFKKEEPRALYIHCYAHFL 750
751 DLSIIRFCKEVKELRSALKTLSSLFNTICMSGEMLANFRNIYRLSQNKTC 800
801 KKHISQSCWTVHDRTLLSVIDSLPEIIETLEVIASHSSNTSFADELSHLL 850
851 TLVSKFEFVFCLKFLYRVLSVTGILSKELQNKTIDIFSLSSKIEAILECL 900
901 SSERNDVYFKTIWDGTEEICQKITCKGFKVEKPSLQKRRKIQKSVDLGNS 950
951 DNMFFPTSTEEQYKINIYYQGLDTILQNLKLCFSEFDYCKIKQISELLFK 1000
1001 WNEPLNETTAKHVQEFYKLDEDIIPELRFYRHYAKLNFVIDDSCINFVSL 1050
1051 GCLFIQHGLHSNIPCLSKLLYIALSWPITSASTENSFSTLPRLKTYLCNT 1100
1101 MGQEKLTGPALMAVEQELVNKLMEPERLNEIVEKFISQMKEI 1142
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.