| Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q5SXM2 from www.uniprot.org...
The NucPred score for your sequence is 0.97 (see score help below)
1 MDVDAEREKITQEIKELERILDPGSSGSHVEISESSLESDSEADSLPSED 50
51 LDPADPPISEEERWGEASNDEDDPKDKTLPEDPETCLQLNMVYQEVIQEK 100
101 LAEANLLLAQNREQQEELMRDLAGSKGTKVKDGKSLPPSTYMGHFMKPYF 150
151 KDKVTGVGPPANEDTREKAAQGIKAFEELLVTKWKNWEKALLRKSVVSDR 200
201 LQRLLQPKLLKLEYLHQKQSKVSSELERQALEKQGREAEKEIQDINQLPE 250
251 EALLGNRLDSHDWEKISNINFEGSRSAEEIRKFWQNSEHPSINKQEWSRE 300
301 EEERLQAIAAAHGHLEWQKIAEELGTSRSAFQCLQKFQQHNKALKRKEWT 350
351 EEEDRMLTQLVQEMRVGSHIPYRRIVYYMEGRDSMQLIYRWTKSLDPGLK 400
401 KGYWAPEEDAKLLQAVAKYGEQDWFKIREEVPGRSDAQCRDRYLRRLHFS 450
451 LKKGRWNLKEEEQLIELIEKYGVGHWAKIASELPHRSGSQCLSKWKIMMG 500
501 KKQGLRRRRRRARHSVRWSSTSSSGSSSGSSGGSSSSSSSSSEEDEPEQA 550
551 QAGEGDRALLSPQYMVPDMDLWVPARQSTSQPWRGGAGAWLGGPAASLSP 600
601 PKGSSASQGGSKEASTTAAAPGEETSPVQVPARAHGPVPRSAQASHSADT 650
651 RPAGAEKQALEGGRRLLTVPVETVLRVLRANTAARSCTQKEQLRQPPLPT 700
701 SSPGVSSGDSVARSHVQWLRHRATQSGQRRWRHALHRRLLNRRLLLAVTP 750
751 WVGDVVVPCTQASQRPAVVQTQADGLREQLQQARLASTPVFTLFTQLFHI 800
801 DTAGCLEVVRERKALPPRLPQAGARDPPVHLLQASSSAQSTPGHLFPNVP 850
851 AQEASKSASHKGSRRLASSRVERTLPQASLLASTGPRPKPKTVSELLQEK 900
901 RLQEARAREATRGPVVLPSQLLVSSSVILQPPLPHTPHGRPAPGPTVLNV 950
951 PLSGPGAPAAAKPGTSGSWQEAGTSAKDKRLSTMQALPLAPVFSEAEGTA 1000
1001 PAASQAPALGPGQISVSCPESGLGQSQAPAASRKQGLPEAPPFLPAAPSP 1050
1051 TPLPVQPLSLTHIGGPHVATSVPLPVTWVLTAQGLLPVPVPAVVSLPRPA 1100
1101 GTPGPAGLLATLLPPLTETRAAQGPRAPALSSSWQPPANMNREPEPSCRT 1150
1151 DTPAPPTHALSQSPAEADGSVAFVPGEAQVAREIPEPRTSSHADPPEAEP 1200
1201 PWSGRLPAFGGVIPATEPRGTPGSPSGTQEPRGPLGLEKLPLRQPGPEKG 1250
1251 ALDLEKPPLPQPGPEKGALDLGLLSQEGEAATQQWLGGQRGVRVPLLGSR 1300
1301 LPYQPPALCSLRALSGLLLHKKALEHKATSLVVGGEAERPAGALQASLGL 1350
1351 VRGQLQDNPAYLLLRARFLAAFTLPALLATLAPQGVRTTLSVPSRVGSES 1400
1401 EDEDLLSELELADRDGQPGCTTATCPIQGAPDSGKCSASSCLDTSNDPDD 1450
1451 LDVLRTRHARHTRKRRRLV 1469
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.