SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q5TAX3 from www.uniprot.org...

The NucPred score for your sequence is 0.99 (see score help below)

   1  MEESKTLKSENHEPKKNVICEESKAVQVIGNQTLKARNDKSVKEIENSSP    50
51 NRNSSKKNKQNDICIEKTEVKSCKVNAANLPGPKDLGLVLRDQSHCKAKK 100
101 FPNSPVKAEKATISQAKSEKATSLQAKAEKSPKSPNSVKAEKASSYQMKS 150
151 EKVPSSPAEAEKGPSLLLKDMRQKTELQQIGKKIPSSFTSVDKVNIEAVG 200
201 GEKCALQNSPRSQKQQTCTDNTGDSDDSASGIEDVSDDLSKMKNDESNKE 250
251 NSSEMDYLENATVIDESALTPEQRLGLKQAEERLERDHIFRLEKRSPEYT 300
301 NCRYLCKLCLIHIENIQGAHKHIKEKRHKKNILEKQEESELRSLPPPSPA 350
351 HLAALSVAVIELAKEHGITDDDLRVRQEIVEEMSKVITTFLPECSLRLYG 400
401 SSLTRFALKSSDVNIDIKFPPKMNHPDLLIKVLGILKKNVLYVDVESDFH 450
451 AKVPVVVCRDRKSGLLCRVSAGNDMACLTTDLLTALGKIEPVFIPLVLAF 500
501 RYWAKLCYIDSQTDGGIPSYCFALMVMFFLQQRKPPLLPCLLGSWIEGFD 550
551 PKRMDDFQLKGIVEEKFVKWECNSSSATEKNSIAEENKAKADQPKDDTKK 600
601 TETDNQSNAMKEKHGKSPLALETPNRVSLGQLWLELLKFYTLDFALEEYV 650
651 ICVRIQDILTRENKNWPKRRIAIEDPFSVKRNVARSLNSQLVYEYVVERF 700
701 RAAYRYFACPQTKGGNKSTVDFKKREKGKISNKKPVKSNNMATNGCILLG 750
751 ETTEKINAEREQPVQCDEMDCTSQRCIIDNNNLLVNELDFADHGQDSSSL 800
801 STSKSSEIEPKLDKKQDDLAPSETCLKKELSQCNCIDLSKSPDPDKSTGT 850
851 DCRSNLETESSHQSVCTDTSATSCNCKATEDASDLNDDDNLPTQELYYVF 900
901 DKFILTSGKPPTIVCSICKKDGHSKNDCPEDFRKIDLKPLPPMTNRFREI 950
951 LDLVCKRCFDELSPPCSEQHNREQILIGLEKFIQKEYDEKARLCLFGSSK 1000
1001 NGFGFRDSDLDICMTLEGHENAEKLNCKEIIENLAKILKRHPGLRNILPI 1050
1051 TTAKVPIVKFEHRRSGLEGDISLYNTLAQHNTRMLATYAAIDPRVQYLGY 1100
1101 TMKVFAKRCDIGDASRGSLSSYAYILMVLYFLQQRKPPVIPVLQEIFDGK 1150
1151 QIPQRMVDGWNAFFFDKTEELKKRLPSLGKNTESLGELWLGLLRFYTEEF 1200
1201 DFKEYVISIRQKKLLTTFEKQWTSKCIAIEDPFDLNHNLGAGVSRKMTNF 1250
1251 IMKAFINGRKLFGTPFYPLIGREAEYFFDSRVLTDGELAPNDRCCRVCGK 1300
1301 IGHYMKDCPKRKSLLFRLKKKDSEEEKEGNEEEKDSRDVLDPRDLHDTRD 1350
1351 FRDPRDLRCFICGDAGHVRRECPEVKLARQRNSSVAAAQLVRNLVNAQQV 1400
1401 AGSAQQQGDQSIRTRQSSECSESPSYSPQPQPFPQNSSQSAAITQPSSQP 1450
1451 GSQPKLGPPQQGAQPPHQVQMPLYNFPQSPPAQYSPMHNMGLLPMHPLQI 1500
1501 PAPSWPIHGPVIHSAPGSAPSNIGLNDPSIIFAQPAARPVAIPNTSHDGH 1550
1551 WPRTVAPNSLVNSGAVGNSEPGFRGLTPPIPWEHAPRPHFPLVPASWPYG 1600
1601 LHQNFMHQGNARFQPNKPFYTQDRCATRRCRERCPHPPRGNVSE 1644

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.