| Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q5VT06 from www.uniprot.org...
The NucPred score for your sequence is 1.00 (see score help below)
1 MRSSKSKEVPLPNPRNSQSKDTVQADITTSWDALSQTKAALRHIENKLEV 50
51 APTSTAVCDSVMDTKKSSTSATRKISRKDGRYLDDSWVNAPISKSTKSRK 100
101 EKSRSPLRATTLESNVKKNNRVEFREPLVSYREIHGAPSNFSSSHLESKH 150
151 VYCVDVNEEKTESGNWMIGSREERNIRSCDFESSQSSVINDTVVRFLNDR 200
201 PAIDALQNSECLIRMGASMRTEEEMPNRTKGSENNLKLSVNNMAHDTDPK 250
251 ALRLTDSSPSSTSTSNSQRLDILKRRQHDVKLEKLKERIRKQWEHSEETN 300
301 GRGQKLGHIDHPVMVVNVDNSVTAKVRKVATAPPAPAYKGFNPSETKIRT 350
351 PDGKVWQEAEFQNMSRELYRDLALHFADDISIKEKPAEKSKEKKVVKPVR 400
401 KVQKVAQLSSTECRTGSSHLISTSSWRDGQKLVKKILGPAPRMEPKEQRT 450
451 ASSDRGGRERTAKSGGHIGRAESDPRLDVLHRHLQRNSERSRSKSRSENN 500
501 IKKLASSLPDNKQEENTALNKDFLPIEIRGILDDLQLDSTAHTAKQDTVE 550
551 LQNQKSSAPVHAPRSHSPVKRKPDKITANEDPPVISKRRHYDTDEVRQYI 600
601 VRQQEERKRKQNEEKKAQKEATEQKNKRLQELYRKQKEAFTKVKNVPPSE 650
651 PSATRRLQETYSKLLLEKTLLEEPSHQHVTQETQAKPGYQPSGESDKENK 700
701 VQERPPSASSSSDMSLSEPPQPLARKDLMESTWMQPERLSPQVHHSQPQP 750
751 FAGTAGSLLSHLLSLEHVGILHKDFESILPTRKNHNMASRPLTFTPQPYV 800
801 TSPAAYTDALLKPSASQYKSKLDRIEALKATAASLSSRIESEAKKLAGAS 850
851 INYGSAWNTEYDVQQAPQEDGPWTKAVTPPVKDDNEDVFSARIQKMLGSC 900
901 VSHATFDDDLPGVGNLSEFKKLPEMIRPQSAISSFRVRSPGPKPEGLLAQ 950
951 LCKRQTDSSSSDMQACSQDKAKISLGSSIDSVSEGPLLSEGSLSEEEGDQ 1000
1001 DGQPLLKVAEILKEKEFCPGERNSYEPIKEFQKEAEKFLPLFGHIGGTQS 1050
1051 KGPWEELAKGSPHSVINIFTKSYQLYGKGFEDKLDRGTSTSRPLNATATP 1100
1101 LSGVSYEDDFVSSPGTGTSTEKKSTLEPHSTLSPQEDHSNRKSAYDPSSV 1150
1151 DVTSQHSSGAQSAASSRSSTSSKGKKGKKEKTEWLDSFTGNVQNSLLDEE 1200
1201 KAERGSHQGKKSGTSSKLSVKDFEQTLDTDSTLEDLSGHSVSVSSDKGRS 1250
1251 QKTPTSPLSPSSQKSLQFDVAGTSSERSKSSVMPPTITGFKPNAPLTDLN 1300
1301 PAASRTTTENMAPIPGSKRFSPAGLHHRMAAELSYLNAIEESVRQLSDVE 1350
1351 RVRGISLAQQESVSLAQIIKAQQQRHERDLALLKLKAEQEALESQRQLEE 1400
1401 TRNKAAQVHAESLQQVVQSQREVTEVLQEATCKIAAQQSETARLTTDAAR 1450
1451 QICEMAELTRTHISDAVVASGAPLAILYDHQRQHLPDFVKQLRTRTETDR 1500
1501 KSPSVSLSQSKEGTLDSKHQKYSASYDSYSESSGYKNHDRRSSSGSSRQE 1550
1551 SPSVPSCKENEKKLNGEKIESSIDEQVQTAADDSLRSDSVPSLPDEKDST 1600
1601 SIATEYSLKFDESMTEDEIEEQSFRSLLPSESHRRFNMEKRRGHHDDSDE 1650
1651 EASPEKTTLSTAKELNMPFSGGQDSFSKFTMEMVRQYMKEEEMRAAHQSS 1700
1701 LLRLREKALKEKTKAELAWLEHQKKHLRDKGEDDKMPPLRKKQRGLLLRL 1750
1751 QQEKAEIKRLQEANKAARKERQLILKQQEEIEKIRQTTIKLQEKLKSAGE 1800
1801 SKLDSHSDDDTKDNKATSPGPTDLETRSPSPISISSSETSSIMQKLKKMR 1850
1851 SRMDEKFLTKREQKLMQRRQHAEELLEWKRRLDAEEAEIRQMEKQALAAW 1900
1901 DKELIKPKTPKKELEDQRTEQKEIASEEESPVPLYSHLNSESSIPEELGS 1950
1951 PAVEYVPSESIGQEQPGSPDHSILTEEMICSQELESSTSPSKHSLPKSCT 2000
2001 SVSKQESSKGSHRTGGQCHLPIKSHQHCYSWSDESLSMTQSETTSDQSDI 2050
2051 EGRIRALKDELRKRKSVVNQLKKEQKKRQKERLKAQEASLIKQLESYDEF 2100
2101 IKKTEAELSQDLETSPTAKPQIKTLSSASEKPKIKPLTPLHRSETAKNWK 2150
2151 SLTESERSRGSLESIAEHVDASLSGSERSVSERSLSAYAKRVNEWDSRTE 2200
2201 DFQTPSPVLRSSRKIREESGDSLENVPALHLLKELNATSRILDMSDGKVG 2250
2251 ESSKKSEIKEIEYTKLKKSKIEDAFSKEGKSDVLLKLVLEQGDSSEILSK 2300
2301 KDLPLDSENVQKDLVGLAIENLHKSEEMLKERQSDQDMNHSPNIQSGKDI 2350
2351 HEQKNTKEKDLSWSEHLFAPKEIPYSEDFEVSSFKKEISAELYKDDFEVS 2400
2401 SLLSLRKDSQSCRDKPQPMRSSTSGATSFGSNEEISECLSEKSLSIHSNV 2450
2451 HSDRLLELKSPTELMKSKERSDVEHEQQVTESPSLASVPTADELFDFHIG 2500
2501 DRVLIGNVQPGILRFKGETSFAKGFWAGVELDKPEGNNNGTYDGIAYFEC 2550
2551 KEKHGIFAPPQKISHIPENFDDYVDINEDEDCYSDERYQCYNQEQNDTEG 2600
2601 PKDREKDVSEYFYEKSLPSVNDIEASVNRSRSLKIETDNVQDISGVLEAH 2650
2651 VHQQSSVDSQISSKENKDLISDATEKVSIAAEDDTLDNTFSEELEKQQQF 2700
2701 TEEEDNLYAEASEKLCTPLLDLLTREKNQLEAQLKSSLNEEKKSKQQLEK 2750
2751 ISLLTDSLLKVFVKDTVNQLQQIKKTRDEKIQLSNQELLGDDQKKVTPQD 2800
2801 LSQNVEEQSPSISGCFLSSELEDEKEEISSPDMCPRPESPVFGASGQEEL 2850
2851 AKRLAELELSREFLSALGDDQDWFDEDFGLSSSHKIQKNKAEETIVPLMA 2900
2901 EPKRVTQQPCETLLAVPHTAEEVEILVHNAAEELWKWKELGHDLHSISIP 2950
2951 TKLLGCASKGLDIESTSKRVYKQAVFDLTKEIFEEIFAEDPNLNQPVWMK 3000
3001 PCRINSSYFRRVKNPNNLDEIKSFIASEVLKLFSLKKEPNHKTDWQKMMK 3050
3051 FGRKKRDRVDHILVQELHEEEAQWVNYDEDELCVKMQLADGIFETLIKDT 3100
3101 IDVLNQISEKQGRMLLV 3117
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.