 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q5XG71 from www.uniprot.org...
The NucPred score for your sequence is 0.88 (see score help below)
1 MKPKPLSHKTENTYRFLTFAERLGNVNIDIIHRIDRTASYDEDVETYFFE 50
51 ALLKWRELNLTEHFGKFYKEVIDKCQSFNQLVYHQNEIVQSLKTHLQIRN 100
101 SLAYQPLLDLVVQLARDLQTDFYPHFEDFFLTITSILETQDTELLEWAFT 150
151 SLSYLYKYLWRLMVKDMSKIYSLYSTLLAHKKLHIRNFAAESFTFLMRKV 200
201 SDKNALFNLMFLDLNEHPEKVEGVGQLLFEMCKGVRNMFHSCTGQALKLL 250
251 LQKLGPVTETETQLPWILVGETLKTMAKSSVVYIYKEHFGVFFDCLQESL 300
301 LELHNKVTEANCCENSEQMRRLLETYLIVVKHGSGSKITRPADVCGVLSE 350
351 ALQTASLSTSCRKTLLDVVSALLLAENVSLPETLIKETVEKVFESKFERR 400
401 SVLDFSEVMFAMKQFEQLFLPSFLLYIENCFLMDNSVVSDEALAILAKLI 450
451 LHKAPPPTAGSMAIEKYPLVFSQQTVGSYLKQRKADSKRRKEQFPVLSHL 500
501 LSIVQLPPNKDATYLSRSWAALVVLPHLRPLEKEKTISLVSCFIESLFLA 550
551 VDRGSFGKGHLFVLCQAVNTLLSLEESSELLHLVPVGRVKHLVLTSPTEP 600
601 SVLLLADLYYQRLALCGCKGPLSEEALMELFPKLQANISTGVSKIRLLTI 650
651 RILNHFDIRLPVSMEDDGLSERQSAFAILRQAELVPATVSDYREKLLHLR 700
701 KLRHDVVQGAVPQGRLQEVPLRYLLGMLYVNFSALWDPVIELISSHAYGM 750
751 ENKQFWNVCYEHLEKAASHAEKELHKDVRDEESTGDESWEQTQEGDVGDL 800
801 YQQQLALKTDCRERLDHTNFRFLLWRALAKFPERVEPRSRELSPLFLRFI 850
851 NNEYYPADLQVAPTQDLRKKGRGAVAEEEEEEEPAAGEDEELEEEAVPTE 900
901 DAPQKKKTRRAAAKQLIAHLQVFSKFSNPRALYLESKLYELYLQLLLHQD 950
951 QAVQKITLDCIMTYRHPHILPYRENLQRLLDDRSFKEEIVHFNISEDNTV 1000
1001 VKAAHRADLFPILMRILYGRMKNKTGSKTQGKSASGTRMAIVLRFLAGTQ 1050
1051 PEEIQLFLDLLSEPVKHFKDGDCCSAVIQAVEDLDVSKVLPVGRQHGVLN 1100
1101 SLEVVLKNISHLISTYLPKILQILLCMTATVSHILDQREKIQLRFINPLK 1150
1151 NLRRLGIKMVTDIFLDWESYQFKAEEIDAVFHGTVWPQICRLGSESQYSP 1200
1201 TPLLKLISIWSRNARYFPLLAKQKPGHPEYDILTNVFAVLSAKNLSEATA 1250
1251 SIIMDIVDDLLNLPDFQPTEAVPSLPVTGCVYADVAEDTEPVTVGGRLVL 1300
1301 PHVPAILQYLSKTTISAEKVKKKKNRAQVSKELGILSKISKFMKDREQCS 1350
1351 LLITLLLPFLLRGNVAQDTELDILVTVQNLLQHCLHPAHFLRPLAKLFSV 1400
1401 IKNKLSRQLLCTVFQMSDFESRLKYITDIVKLNAFDKRHLDDINFDVRFS 1450
1451 AFQTITSNIKAMQTVDADYLIAVMHNCFYNMEIGDMSLSDNASICLTSII 1500
1501 KRLAALNVTEKEYKEIIHRTLLEKLRKGLKSQTESVQHDYTLILSCLIQT 1550
1551 FPNQLEFKDLVQLTHCHDPEMDFFENMKHIQIHRRARALKKLAKQLLEGQ 1600
1601 VVLSSKSLQNYIMPYAMAPILDEKMLKHENITIAATEVIGAICRHLSWPA 1650
1651 YVYYLKHFIHVLQSGQINQKLAVSLLVIVLEAFHFDYKTLEEQMGNVKNE 1700
1701 ENTVEMAELLEPEAMEVEDMDEAGKEQASERLSDSKEALGAPEAAASEGT 1750
1751 VAKEQECISKSVSFLPRNKEELERTIQTIQGAITGDILPRLHKCLASATK 1800
1801 REEEHKLVKSKVVNDEEVVRVPLAFAMVKLMRSLPREVMEANLPSILLKV 1850
1851 CVLLKNRAQEIRDIARSTLSKIIEDLGVHFLQYVLKELQTTLVRGYQVHV 1900
1901 LTFTVYTLLQGLSSKLQVGDLDSCLHIMTEIFNHELFGALAEEKEVKQIL 1950
1951 SKVMEARRSKSYDSYEILGKFVGKQQVTKLILPLKEILQNTTSLKLARKV 2000
2001 HETLRRIIAGLIVNPDMTADALLLLSYGLVSENLPLLTEKEKKPAAPVPD 2050
2051 ARLPPQSCLLLPATPVRGGPKAVVNKKTNMHIFIESGLRLLHLSLKTSRI 2100
2101 KSSSEHVLEMLDPFVSVLINCLGAQDVKVITGALQCLIWVLRFPLPSIAS 2150
2151 KAEQLTKHLFLLLKNYARVGAARGQNFHLVVNCFKCVTIVVKKVKSHQIT 2200
2201 EKQLQVLLAYAEEDIYDTSRQATAFGLLKAILSRKLLVPEIDDIMRKVSK 2250
2251 LAISAQNEPARVQCRQVFLKYILDYPLGEKLRPNLEFMLAQLNYEHETGR 2300
2301 ESTLEMIAYLFETFPQGLLHEHCGMFFIPLCLMMVNDDSAMCKRMASMAI 2350
2351 KSLLSKVDREKKDWLFGLVTSWFEAKKRLNRQLAALACGLFVESEGVDFE 2400
2401 RRLGTLLPVIEKEIDPENFKDIIEETEEKAADRLLFGFLTLMRKLIKECS 2450
2451 IIHFTKPSETLSKIWSHVHSHLRHPHSWVWLTAAQIFGLLFASCQPEELI 2500
2501 QKWKGKKTKKKTSDPIAVRFLTSDLGQKMKSISLASCHQLHSKFLDESLG 2550
2551 EQVVKNLLFIAKVLYLLELESGNKRGEVKDSEEQDTLADALAREAAEEKA 2600
2601 GAGGKMESNREKKEEPSKPATLMWLIQKLSRMAKLEAAYSPRNPLKRTCI 2650
2651 FKFLGAVAVDLGVDRVKPYLPLIIAPLFRELNSTFAEQDPVLKNLSQEII 2700
2701 ELLKKLVGLESFSLAFASVQKQASEKRALRKKRKALEFVTNPDIAAKKKL 2750
2751 KKHKNKSEAKKRKIEFLRPGYKAKRQKSHSLRDLAMVE 2788
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.