SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q60675 from www.uniprot.org...

The NucPred score for your sequence is 0.64 (see score help below)

   1  MPAATAGILLLLLLGTLEGSQTQRRQSQAHQQRGLFPAVLNLASNALITT    50
51 NATCGEKGPEMYCKLVEHVPGQPVRNPQCRICNQNSSNPYQRHPITNAID 100
101 GKNTWWQSPSIKNGVEYHYVTITLDLQQVFQIAYVIVKAANSPRPGNWIL 150
151 ERSLDDVEYKPWQYHAVTDTECLTLYNIYPRTGPPSYAKDDEVICTSFYS 200
201 KIHPLENGEIHISLINGRPSADDPSPELLEFTSARYIRLRFQRIRTLNAD 250
251 LMMFAHKDPREIDPIVTRRYYYSVKDISVGGMCICYGHARACPLDPATNK 300
301 SRCECEHNTCGESCDRCCPGFHQKPWRAGTFLTKSECEACNCHGKAEECY 350
351 YDETVASRNLSLNIHGKYIGGGVCINCTHNTAGINCETCVDGFFRPKGVS 400
401 PNYPRPCQPCHCDPTGSLSEVCVKDEKYAQRGLKPGSCHCKTGFGGVNCD 450
451 RCVRGYHGYPDCQPCNCSGLGSTNEDPCVGPCSCKENVEGEDCSRCKSGF 500
501 FNLQEDNQKGCEECFCSGVSNRCQSSYWTYGNIQDMRGWYLTDLSGRIRM 550
551 APQLDNPDSPQQISISNSEARKSLLDGYYWSAPPPYLGNRLPAVGGQLSF 600
601 TISYDLEEEEDDTEKILQLMIIFEGNDLRISTAYKEVYLEPSEEHIEEVS 650
651 LKEEAFTIHGTNLPVTRKDFMIVLTNLERVLMQITYNLGMDAIFRLSSVN 700
701 LESAVPYPTDRRIATDVEVCQCPPGYSGSSCETCWPRHRRVNGTIFGGIC 750
751 EPCQCFAHAEACDDITGECLNCKDHTGGPYCNECLPGFYGDPTRGSPEDC 800
801 QPCACPLNIPSNNFSPTCHLDRSLGLICDECPIGYTGPRCERCAEGYFGQ 850
851 PSIPGGSCQPCQCNDNLDYSIPGSCDSLSGSCLICKPGTTGRYCELCADG 900
901 YFGDAVNAKNCQPCRCNINGSFSEICHTRTGQCECRPNVQGRHCDECKPE 950
951 TFGLQLGRGCLPCNCNSFGSKSFDCEASGQCWCQPGVAGKKCDRCAHGYF 1000
1001 NFQEGGCIACDCSHLGNNCDPKTGQCICPPNTTGEKCSECLPNTWGHSIV 1050
1051 TGCKVCNCSTVGSLASQCNVNTGQCSCHPKFSGMKCSECSRGHWNYPLCT 1100
1101 LCDCFLPGTDATTCDLETRKCSCSDQTGQCSCKVNVEGVHCDRCRPGKFG 1150
1151 LDAKNPLGCSSCYCFGVTSQCSEAKGLIRTWVTLSDEQTILPLVDEALQH 1200
1201 TTTKGIAFQKPEIVAKMDEVRQELHLEPFYWKLPQQFEGKKLMAYGGKLK 1250
1251 YAIYFEARDETGFATYKPQVIIRGGTPTHARIITRHMAAPLIGQLTRHEI 1300
1301 EMTEKEWKYYGDDPRISRTVTREDFLDILYDIHYILIKATYGNVVRQSRI 1350
1351 SEISMEVAEPGHVLAGSPPAHLIERCDCPPGYSGLSCETCAPGFYRLRSE 1400
1401 PGGRTPGPTLGTCVPCQCNGHSSQCDPETSVCQNCQHHTAGDFCERCALG 1450
1451 YYGIVRGLPNDCQPCACPLISPSNNFSPSCVLEGLEDYRCTACPRGYEGQ 1500
1501 YCERCAPGYTGSPSSPGGSCQECECDPYGSLPVPCDRVTGLCTCRPGATG 1550
1551 RKCDGCEHWHAREGAECVFCGDECTGLLLGDLARLEQMTMNINLTGPLPA 1600
1601 PYKILYGLENTTQELKHLLSPQRAPERLIQLAEGNVNTLVMETNELLTRA 1650
1651 TKVTADGEQTGQDAERTNSRAESLEEFIKGLVQDAEAINEKAVQLNETLG 1700
1701 NQDKTAERNLEELQKEIDRMLKELRSKDLQTQKEVAEDELVAAEGLLKRV 1750
1751 NKLFGEPRAQNEDMEKDLQQKLAEYKNKLDDAWDLLREATDKTRDANRLS 1800
1801 AANQKNMTILETKKEAIEGSKRQIENTLKEGNDILDEANRLLGEINSVID 1850
1851 YVDDIKTKLPPMSEELSDKIDDLAQEIKDRRLAEKVFQAESHAAQLNDSS 1900
1901 AVLDGILDEAKNISFNATAAFRAYSNIKDYIDEAEKVAREAKELAQGATK 1950
1951 LATSPQGLLKEDAKGSLQKSFRILNEAKKLANDVKGNHNDLNDLKTRLET 2000
2001 ADLRNSGLLGALNDTMDKLSAITNDTAAKLQAVKEKAREANDTAKAVLAQ 2050
2051 VKDLHQNLDGLKQNYNKLADSVAKTNAVVKDPSKNKIIADAGTSVRNLEQ 2100
2101 EADRLIDKLKPIKELEDNLKKNISEIKELINQARKQANSIKVSVSSGGDC 2150
2151 VRTYRPEIKKGSYNNIVVHVKTAVADNLLFYLGSAKFIDFLAIEMRKGKV 2200
2201 SFLWDVGSGVGRVEYPDLTIDDSYWYRIEASRTGRNGSISVRALDGPKAS 2250
2251 MVPSTYHSVSPPGYTILDVDANAMLFVGGLTGKIKKADAVRVITFTGCMG 2300
2301 ETYFDNKPIGLWNFREKEGDCKGCTVSPQVEDSEGTIQFDGEGYALVSRP 2350
2351 IRWYPNISTVMFKFRTFSSSALLMYLATRDLKDFMSVELSDGHVKVSYDL 2400
2401 GSGMTSVVSNQNHNDGKWKAFTLSRIQKQANISIVDIDSNQEENVATSSS 2450
2451 GNNFGLDLKADDKIYFGGLPTLRNLSMKARPEVNVKKYSGCLKDIEISRT 2500
2501 PYNILSSPDYVGVTKGCSLENVYTVSFPKPGFVELAAVSIDVGTEINLSF 2550
2551 STRNESGIILLGSGGTLTPPRRKRRQTTQAYYAIFLNKGRLEVHLSSGTR 2600
2601 TMRKIVIKPEPNLFHDGREHSVHVERTRGIFTVQIDEDRRHMQNLTEEQP 2650
2651 IEVKKLFVGGAPPEFQPSPLRNIPAFQGCVWNLVINSIPMDFAQPIAFKN 2700
2701 ADIGRCTYQKPREDESEAVPAEVIVQPQPVPTPAFPFPAPTMVHGPCVAE 2750
2751 SEPALLTGSKQFGLSRNSHIAIAFDDTKVKNRLTIELEVRTEAESGLLFY 2800
2801 MARINHADFATVQLRNGFPYFSYDLGSGDTSTMIPTKINDGQWHKIKIVR 2850
2851 VKQEGILYVDDASSQTISPKKADILDVVGILYVGGLPINYTTRRIGPVTY 2900
2901 SLDGCVRNLHMEQAPVDLDQPTSSFHVGTCFANAESGTYFDGTGFAKAVG 2950
2951 GFKVGLDLLVEFEFRTTRPTGVLLGVSSQKMDGMGIEMIDEKLMFHVDNG 3000
3001 AGRFTAIYDAGIPGHMCNGQWHKVTAKKIKNRLELVVDGNQVDAQSPNSA 3050
3051 STSADTNDPVFVGGFPGGLNQFGLTTNIRFRGCIRSLKLTKGTGKPLEVN 3100
3101 FAKALELRGVQPVSCPTT 3118

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.