| Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q61315 from www.uniprot.org...
The NucPred score for your sequence is 1.00 (see score help below)
1 MAAASYDQLLKQVEALKMENSNLRQELEDNSNHLTKLETEASNMKEVLKQ 50
51 LQGSIEDETMTSGQIDLLERLKEFNLDSNFPGVKLRSKMSLRSYGSREGS 100
101 VSSRSGECSPVPMGSFPRRTFVNGSRESTGYLEELEKERSLLLADLDKEE 150
151 KEKDWYYAQLQNLTKRIDSLPLTENFSLQTDMTRRQLEYEARQIRAAMEE 200
201 QLGTCQDMEKRAQRRIARIQQIEKDILRVRQLLQSQAAEAERSSQSRHDA 250
251 ASHEAGRQHEGHGVAESNTAASSSGQSPATRVDHETASVLSSSGTHSAPR 300
301 RLTSHLGTKVEMVYSLLSMLGTHDKDDMSRTLLAMSSSQDSCISMRQSGC 350
351 LPLLIQLLHGNDKDSVLLGNSRGSKEARARASAALHNIIHSQPDDKRGRR 400
401 EIRVLHLLEQIRAYCETCWEWQEAHEQGMDQDKNPMPAPVEHQICPAVCV 450
451 LMKLSFDEEHRHAMNELGGLQAIAELLQVDCEMYGLTNDHYSVTLRRYAG 500
501 MALTNLTFGDVANKATLCSMKGCMRALVAQLKSESEDLQQVIASVLRNLS 550
551 WRADVNSKKTLREVGSVKALMECALEVKKESTLKSVLSALWNLSAHCTEN 600
601 KADICAVDGALAFLVGTLTYRSQTNTLAIIESGGGILRNVSSLIATNEDH 650
651 RQILRENNCLQTLLQHLKSHSLTIVSNACGTLWNLSARNPKDQEALWDMG 700
701 AVSMLKNLIHSKHKMIAMGSAAALRNLMANRPAKYKDANIMSPGSSLPSL 750
751 HVRKQKALEAELDAQHLSETFDNIDNLSPKASHRSKQRHKQNLYGDYAFD 800
801 ANRHDDSRSDNFNTGNMTVLSPYLNTTVLPSSSSSRGSLDSSRSEKDRSL 850
851 ERERGIGLSAYHPTTENAGTSSKRGLQITTTAAQIAKVMEEVSAIHTSQD 900
901 DRSSASTTEFHCVADDRSAARRSSASHTHSNTYNFTKSENSNRTCSMPYA 950
951 KVEYKRSSNDSLNSVTSSDGYGKRGQMKPSVESYSEDDESKFCSYGQYPA 1000
1001 DLAHKIHSANHMDDNDGELDTPINYSLKYSDEQLNSGRQSPSQNERWARP 1050
1051 KHVIEDEIKQNEQRQARSQNTSYPVYSENTDDKHLKFQPHFGQQECVSPY 1100
1101 RSRGTSGSETNRMGSSHAINQNVNQSLCQEDDYEDDKPTNYSERYSEEEQ 1150
1151 HEEEEERPTNYSIKYNEEKHHVDQPIDYSLKYATDISSSQKPSFSFSKNS 1200
1201 SAQSTKPEHLSPSSENTAVPPSNAKRQNQLRPSSAQRNGQTQKGTTCKVP 1250
1251 SINQETIQTYCVEDTPICFSRCSSLSSLSSADDEIGCDQTTQEADSANTL 1300
1301 QTAEVKENDVTRSAEDPATEVPAVSQNARAKPSRLQASGLSSESTRHNKA 1350
1351 VEFSSGAKSPSKSGAQTPKSPPEHYVQETPLVFSRCTSVSSLDSFESRSI 1400
1401 ASSVQSEPCSGMVSGIISPSDLPDSPGQTMPPSRSKTPPPPPQTVQAKRE 1450
1451 VPKSKVPAAEKRESGPKQTAVNAAVQRVQVLPDVDTLLHFATESTPDGFS 1500
1501 CSSSLSALSLDEPFIQKDVELRIMPPVQENDNGNETESEQPEESNENQDK 1550
1551 EVEKPDSEKDLLDDSDDDDIEILEECIISAMPTKSSRKAKKLAQTASKLP 1600
1601 PPVARKPSQLPVYKLLPAQNRLQAQKHVSFTPGDDVPRVYCVEGTPINFS 1650
1651 TATSLSDLTIESPPNELATGDGVRAGIQSGEFEKRDTIPTEGRSTDDAQR 1700
1701 GKISSIVTPDLDDNKAEEGDILAECINSAMPKGKSHKPFRVKKIMDQVQQ 1750
1751 ASSTSSGANKNQVDTKKKKPTSPVKPMPQNTEYRTRVRKNTDSKVNVNTE 1800
1801 ETFSDNKDSKKPSLQTNAKAFNEKLPNNEDRVRGTFALDSPHHYTPIEGT 1850
1851 PYCFSRNDSLSSLDFDDDDVDLSREKAELRKGKESKDSEAKVTCRPEPNS 1900
1901 SQQAASKSQASIKHPANRAQSKPVLQKQPTFPQSSKDGPDRGAATDEKLQ 1950
1951 NLAIENTPVCFSRNSSLSSLSDIDQENNNNKESEPIKEAEPANSQGEPSK 2000
2001 PQASGYAPKSFHVEDTPVCFSRNSSLSSLSIDSEDDLLQECISSAMPKKK 2050
2051 RPSRLKSESEKQSPRKVGGILAEDLTLDLKDLQRPDSEHAFSPGSENFDW 2100
2101 KAIQEGANSIVSSLHQAAAAAACLSRQASSDSDSILSLKSGISLGSPFHL 2150
2151 TPDQEEKPFTSNKGPRILKPGEKSTLEAKKIESENKGIKGGKKVYKSLIT 2200
2201 GKIRSNSEISSQMKQPLPTNMPSISRGRTMIHIPGLRNSSSSTSPVSKKG 2250
2251 PPLKTPASKSPSEGPGATTSPRGTKPAGKSELSPITRQTSQISGSNKGSS 2300
2301 RSGSRDSTPSRPTQQPLSRPMQSPGRNSISPGRNGISPPNKLSQLPRTSS 2350
2351 PSTASTKSSGSGKMSYTSPGRQLSQQNLTKQASLSKNASSIPRSESASKG 2400
2401 LNQMSNGNGSNKKVELSRMSSTKSSGSESDSSERPALVRQSTFIKEAPSP 2450
2451 TLRRKLEESASFESLSPSSRPDSPTRSQAQTPVLSPSLPDMSLSTHPSVQ 2500
2501 AGGWRKLPPNLSPTIEYNDGRPTKRHDIARSHSESPSRLPINRAGTWKRE 2550
2551 HSKHSSSLPRVSTWRRTGSSSSILSASSESSEKAKSEDERHVSSMPAPRQ 2600
2601 MKENQVPTKGTWRKIKESDISPTGMASQSASSGAASGAESKPLIYQMAPP 2650
2651 VSKTEDVWVRIEDCPINNPRSGRSPTGNTPPVIDSVSEKGSSSIKDSKDS 2700
2701 KDTHGKQSVGSGSPVQTVGLETRLNSFVQVEAPEQKGTEAKPGQSNPVSI 2750
2751 AETAETCIAERTPFSSSSSSKHSSPSGTVAARVTPFNYNPSPRKSSADST 2800
2801 SARPSQIPTPVSTNTKKRDSKTDITESSGAQSPKRHSGSYLVTSV 2845
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.