SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q61493 from www.uniprot.org...

The NucPred score for your sequence is 1.00 (see score help below)

   1  MFSVRIVTADYYMASPLPGLDTCQSPLTQLPVKKVPVVRVFGATPAGQKT    50
51 CLHLHGIFPYLYVPYDGYGQQPESYLSQMAFSIDRALNVALGNPSSTAQH 100
101 VFKVSLVSGMPFYGYHEKERHFMKIYLYNPAMVKRICELLQSGAIMNKCY 150
151 QPHEAHIPYLLQLFIDYNLYGMNLINLAAVKFRKARRKGNASHATGLFKH 200
201 QLSGNSPAGTLFRWEEDEIPSSLLLEGVEPLSTCELEVDAVAADILNRLD 250
251 IEAQIGGNPGLQAIWEDEKQRRRNRNESSQISQPESQDCRFVPATESEKQ 300
301 FQKRLQEVLKQNDFSVTLSGSVDYSNGSQEFSAELTLHSEILSPEMLPCS 350
351 PANMIEVHKDTDLSKGNTKHKVEEALINEEAILNLIENSQTFQPLTQRLS 400
401 ETPVFMGSSPDESLVHLLAGLESDGYQGEKNRMPLPCHSFGESQNPQNSD 450
451 DEENEPQIEKEEMELSVVMSQRWDSDIEEHCAKKRSLCRNAHRSSTEEDD 500
501 SSSEEEMEWTDNSLLFANLSIPQLDGTADENSDNPLNNENSRAHSSVIAT 550
551 SKLSVRPSIFHKDAATLEPPSSAKITFQCKHTSALSSHVLNKDGLTEDLS 600
601 QPNSTEKGRDNSVTFTKESTYSMKYSGSLSSTVHSDNSHKEICKKDKSLP 650
651 VSSCESSVFDYEEDIPSVTRQVPSRKYSNMRKIEKDASCIHVNRHISETI 700
701 LGKNSFNFADLNHSKRKLSSEGNEKGNSTSLSGVFPSSLTENCDLLPSSG 750
751 ENRSMAHSLESITDESGLNKLKIRYEEFQEHKMEKPSLSQQAAHYMFFPS 800
801 VVLSNCLTRPQKLSPVTYKLQSGNKPSRLKLNKKKLIGLQETSTKSTETG 850
851 ATKDSCTHNDLYTGASEKENGLSSDSAKATHGTFENKPPTEHFIDCHFGD 900
901 GSLEAEQSFGLYGNKYTLRAKRKVNYETEDSESSFVTQNSKISLPHPMEI 950
951 GENLDGTLKSRKRRKMSKKLPPVIIKYIIINRFRGRKNMLVKLGKIDSKE 1000
1001 KQVILTEEKMELYKKLAPLKDFWPKVPDSPATKYPIYPLTPKKSHRRKSK 1050
1051 HKSAKKKPGKQHRTNSENIKRTLSFRKKRTHAVLSPPSPSYIAETEDCDL 1100
1101 SYSDVMSKLGFLSERSTSPINSSPPRCWSPTDPRAEEIMAAAEKESMLFK 1150
1151 GPNVYNTKTVSPRVGKASRARAQVKKSKARLANSSVVTNKRNKRNQTTKL 1200
1201 VDDGKKKPRAKQKQRANEKSLSRKHAIPADEKMKPHSEAELTPNHQSVSE 1250
1251 LTSSSGAQALSKQKEMSQTGPAVDHPLPPAQPTGISAQQRLSNCFSSFLE 1300
1301 SKKSVDLRTFPSSRDDSHSSVVYSSIGPGISKINIQRSHNQSAMFTRKET 1350
1351 TLIQKSIFDLSNHLSQVAQSTQVCSGIISPKTEESSSTQKNCGSSMGKLN 1400
1401 EYRSSLESKPEQVCAPNFLHCKDSQQQTVSVSEQSKTSETCSPGNAASEE 1450
1451 SQTPNCFVTSLKSPIKQIAWEQKQRGFILDMSNFKPEKVKQRSLSEAISQ 1500
1501 TKALSQCKNQNVSTPSVFGEGQSGLAVLKELLQKRQQKAQSTNVVQDSTS 1550
1551 THQPDKNISVSNEHKKANKRTRPVTSPRKPRTPRRTKPKEQTPRRLKVDP 1600
1601 LNLQTSGHLDNSLSDDSPILFSDPGFESCYSLEDSLSPEHNYNFDINTIG 1650
1651 QTGFCSFYSGSQFVPADQNLPQKFLSDAVQDLFPGQAIDKSELLSHDRQS 1700
1701 CSEEKHHVSDSSPWIRASTLNPELFEKVAMDNNENHRHSQWKNSFHPLTS 1750
1751 HSNSIMESFCVQQAENCLTEKSRLNRSSVSKEVFLSLPQANSSDWIQGHN 1800
1801 RKEADQSLHSANTSFTTILSSPDGELVDAASEDLELYVSRNNDVLTPTPD 1850
1851 SSPRSTSSPLQSKNGSFTPRTAHILKPLMSPPSREEIVATLLDHDLSEAI 1900
1901 YQEPFCSNPSDVPEKPREIGGRLLMVETRLPNDLIEFEGDFSLEGLRLWK 1950
1951 TAFSAMTQNPRPGSPLRNGQAVVNKESSNSHKMVEDKKIVIMPCKYAPSR 2000
2001 QLVQAWLQAKEEYERSKKLPKTELTPVTKSAENVSPSLNPGDTCAVSPQV 2050
2051 DKCPHTLSSSAHTKEEVSKSQIALQTSTTGCSQTLLAAASAAVPEEDEDD 2100
2101 NDNCYVSYSSPDSPGIPPWQQAASPDFRSLNGDDRHSSPGKELCSLAVEN 2150
2151 FLKPIKDGIQKSSCSESWEPQVISPIHARARTGKWDPLCLHSTPVMQRKF 2200
2201 LEKLPEATGLSPLSVEPKTQKLYNKKGSDADGLRRVLLTTQVENQFAAVN 2250
2251 TPKKETSQIDGPSLNNTYGFKVSIQNLQEAKALHEIQNLTLISVELHART 2300
2301 RRDLQPDPEFDPICALFYCISSDTPLPDTEKTELTGVIVIDKDKTVTHQD 2350
2351 IRSQTPLLIRSGITGLEVTYAADEKALFQEITNIIKRYDPDILLGYEIQM 2400
2401 HSWGYLLQRAAALSVDLCQMISRVPDDKIENRFAAERDDYGSDTMSEINI 2450
2451 VGRITLNLWRIMRNEVALTNYTFENVSFHVLHQRFPLFTFRVLSDWFDNK 2500
2501 TDLYRWKMVDHYVSRVRGNLQMLEQLDLIGKTSEMARLFGIQFLHVLTRG 2550
2551 SQYRVESMMLRIAKPMNYIPVTPSIQQRSQMRAPQCVPLIMEPESRFYSN 2600
2601 SVLVLDFQSLYPSIVIAYNYCFSTCLGHVENLGKYDEFKFGCTSLRVPPD 2650
2651 LLYQIRHDVTVSPNGVAFVKPSVRKGVLPRMLEEILKTRLMVKQSMKSYK 2700
2701 QDRALSRMLNARQLGLKLIANVTFGYTAANFSGRMPCIEVGDSIVHKARE 2750
2751 TLERAIKLVNDTKKWGARVVYGDTDSMFVLLKGATKEQSFKIGQEIAEAV 2800
2801 TATNPRPVKLKFEKVYLPCVLQTKKRYVGYMYETLDQKEPVFDAKGIETV 2850
2851 RRDSCPAVSKILERSLKLLFETRDISLIKQYVQRQCMKLVEGKASIQDFI 2900
2901 FAKEYRGSFSYRPGACVPALELTRKMLAYDRRSEPRVGERVPYVIIYGTP 2950
2951 GLPLIQLIRRPAEVLQDPTLRLNATYYITKQILPPLARIFSLIGIDVFSW 3000
3001 YQELPRIQKATSSSRSELEGRKGTISQYFTTLHCPVCDDLTQHGICSKCR 3050
3051 SQPQHVAIILNQEIRELERKQEQLIKICRNCTGSFDRHIPCVSLNCPVLF 3100
3101 KLSRVNRELSKAPYLRQLLDQF 3122

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.