SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q61602 from www.uniprot.org...

The NucPred score for your sequence is 0.92 (see score help below)

   1  MEAQAHSSTATERKKAENSIGKCPTRTDVSEKAVASSTTSNEDESPGQIY    50
51 HRERRNAITMQPQSVQGLNKISEEPSTSSDERASLIKKEIHGSLPHLAEP 100
101 SLPYRGTVFAMDPRNGYMEPHYHPPHLFPAFHPPVPIDARHHEGRYHYDP 150
151 SPIPPLHVPSALSSSPTYPDLPFIRISPHRNPTAASESPFSPPHPYINPY 200
201 MDYIRSLHSSPSLSMISAARGLSPTDAPHAGVSPAEYYHQMALLTGQRSP 250
251 YADILPSAATAGAGAIHMEYLHAMDSTRFPSPRLSARPSRKRTLSISPLS 300
301 DHSFDLQTMIRTSPNSLVTILNNSRSSSSASGSYGHLSASAISPALSFTY 350
351 PSAPVSLHMHQQILSRQQSLGSAFGHSPPLIHPAPTFPTQRPIPGIPTVL 400
401 NPVQVSSGPSESSQSKPTSESAVSSTGDPMHNKRSKIKPDEDLPSPGSRG 450
451 QQEQPEGTTLVKEEADKDESKQEPEVIYETNCHWEGCTREFDTQDQLVHH 500
501 INNDHIHGEKKEFVCRWLDCSREQKPFKAQYMLVVHMRRHTGEKPHKCTF 550
551 EGCTKAYSRLENLKTHLRSHTGEKPYVCEHEGCNKAFSNASDRAKHQNRT 600
601 HSNEKPYVCKIPGCTKRYTDPSSLRKHVKTVHGPEAHVTKKQRGDMHPRP 650
651 PPPRDSGSHSQSRSPGRPTQGAFGEQKELSNTTSKREECLQVKTVKAEKP 700
701 MTSQPSPGGQSSCSSQQSPISNYSNSGLELPLTDGGSVADLSAIDETPIM 750
751 DSTISTATTALALQARRNPAGTKWMEHIKLERLKQVNGMFPRLNPILPSK 800
801 APAVSPLIGNGTQSNNNYSSGGPGTLLPSRSDLSGVDFTVLNTLNRRDSN 850
851 TSTISSAYLSSRRSSGISPCFSSRRSSEASQAEGRPQNVSVADSYDPIST 900
901 DASRRSSEASQGDGLPSLLSLTPVQQYRLKAKYAAATGGPPPTPLPHMER 950
951 LSLKTKMALLGEGRDSGVTLPPVHPPRRCSDGGGHTYRGRHLMPHDALAN 1000
1001 SVRRASDPVRTVSENMSLARVQRFSSLNSFNPPNLPPSVEKRSLVLQNYT 1050
1051 RQESSQPRYFQASPCPPSITENVALEALTMDADANLNDEDLLPDDVVQYL 1100
1101 NSQNQTGYGQQLQSGISEDSKVAHEPEDLDLAGLPDSHVGQEYPALEQPC 1150
1151 SEGSKTDLPIQWNEVSSGTSDLSSSKLKCGQQRPSAQQPRGFGLYNNMVV 1200
1201 HPHNLWKVGTGPAGGYQTLGENSSTYNGPEHFAIHSGDGLGTNGNTFHEQ 1250
1251 PFKTQQYGSQLNRQPLTSSALDHACGTGIQGSKLKGNSLQENGGLLDFSL 1300
1301 SVAPNELAGNTVNGMQTQDQMGQGYIAHQLLSGSMQHQGPSRPGQQVLGQ 1350
1351 VGATSHINIYQGTESCLPGTQDNSSQPSSMAAIRGYQPCASYGGNRRQAM 1400
1401 PRGNLTLQQGQLSDMSQSSRVNSIKMEAQGQSQQLCSTVQNYSGQFYDQT 1450
1451 MGFSQQDRKAGSFSLSDANCLLQGNGTENSELLSPGANQVTSTVDSFESH 1500
1501 DLEGVQIDFDAIIDDGDHTSLMSGALSPSIIQNLSHSSSRLTTPRASLPF 1550
1551 PSLSMGTTNMAIGDMSSLLTSLAEESKFLAVMQ 1583

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.