SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q62388 from www.uniprot.org...

The NucPred score for your sequence is 0.99 (see score help below)

   1  MSLALNDLLICCRQLEHDRATERRKEVDKFKRLIQDPETVQHLDRHSDSK    50
51 QGKYLNWDAVFRFLQKYIQKEMESLRTAKSNVSATTQSSRQKKMQEISSL 100
101 VRYFIKCANKRAPRLKCQDLLNYVMDTVKDSSNGLTYGADCSNILLKDIL 150
151 SVRKYWCEVSQQQWLELFSLYFRLYLKPSQDINRVLVARIIHAVTRGCCS 200
201 QTDGLPSKFLDLFSKAIQYARQEKSSPGLSHILAALNIFLKSLAVNFRKR 250
251 VCEAGDEILPTLLYIWTQHRLNDSLKEVIIELIQLQIYIHHPQGARAPEE 300
301 GAYESMKWKSILYNLYDLLVNEISHIGSRGKYSSGSRNIAVKENLIDLMA 350
351 DICYQLFDADTRSVEISQSYVTQRESTDYSVPCKRRKIDVGWEVIKDYLQ 400
401 KSQSDFDLVPWLQITTRLISKYPSSLPNCELSPLILILYQLLPQQRRGER 450
451 IPYVLRCLKEVALCQGKKSNLESSQKSDLLKLWIKIWSITFRGISSGQTQ 500
501 TENFGLLEAIIQGSLVELDREFWKLFTGSACKPSSPSVCCLTLALSICVV 550
551 PDAIKMGTEQSVCEANRSFSVKESIMRWLLFYQLEDDLEDSTELPPILQS 600
601 NFPHLVVEKILVSLTMKNSKAAMKFFQSVPECEQHCEDKEEPSFSEVEEL 650
651 FLQTTFDKMDFLTTVKEYAVEKFQSSVGFSVQQNLKESLDHYLLGLSEQL 700
701 LSNYSSEITSSETLVRCSSLLVGVLGCYCYMGIITEDEAHKSELFQKAKS 750
751 LMQCAGESISLFKNKTNEESRIGSLRNVMHLCTSCLCIHTKHTPNKIASG 800
801 FFLRLLTSKLMNDIADICKSLASCTKKPLDHGVHPGEDDEDGGGCDSLME 850
851 AEGPSSTGLSTAYPASSVSDANDYGENQNAVGAMSPLAADYLSKQDHLLL 900
901 DMLRFLGRSVTASQSHTVSFRGADIRRKLLLLLDSSILDLMKPLHLHMYL 950
951 VLLKDLPGNEHSLPMEDVVELLQPLSLVCSLHRRDQDVCKTILSNVLHIV 1000
1001 TNLGQGSVDMESTRIAQGHFLTVMGAFWHLTKEKKCVFSVRMALVKCLQT 1050
1051 LLEADPYSEWAILNVKGQDFPVNEAFSQFLADDHHQVRMLAAGSVNRLFQ 1100
1101 DMRQGDFSRSLKALPLKFQQTSFNNAYTTAEAGIRGLLCDSQNPDLLDEI 1150
1151 YNRKSVLLMMIAVVLHCSPVCEKQALFALCKSVKENRLEPHLVKKVLEKV 1200
1201 SESFGCRSLEDFMISHLDYLVLEWLNLQDTEYSLSSFPFMLLNYTSIEDF 1250
1251 YRSCYKILIPHLVIRSHFDEVKSIANQIQKCWKSLLVDCFPKILVHILPY 1300
1301 FAYEGTRDSYVSQKRETATKVYDTLKGEDFLGKQIDQVFISNLPEIVVEL 1350
1351 LMTLHETADSADSDASQSATALCDFSGDLDPAPNPPYFPSHVIQATFAYI 1400
1401 SNCHKTKFKSILEILSKIPDSYQKILLAICEQAAETNNVFKKHRILKIYH 1450
1451 LFVSLLLKDIQSGLGGAWAFVLRDVIYTLIHYINKRSSHFTDVSLRSFSL 1500
1501 CCDLLSRVCHTAVTQCKDALESHLHVIVGTLIPLVDYQEVQEQVLDLLKY 1550
1551 LVIDNKDNKNLSVTIKLLDPFPDHVIFKDLRLTQQKIKYSGGPFSLLEEI 1600
1601 NHFLSVSAYNPLPLTRLEGLKDLRRQLEQHKDQMLDLLRASQDNPQDGIV 1650
1651 VKLVVSLLQLSKMAVNQTGEREVLEAVGRCLGEIGPLDFSTIAVQHNKDV 1700
1701 SYTKAYGLPEDRELQWTLIMLTALNNTLVEDSVKIRSAAATCLKNILATK 1750
1751 IGHIFWENYKTSADPMLTYLQPFRTSRKKFLEVPRSVKEDVLEGLDAVNL 1800
1801 WVPQSESHDIWIKTLTCAFLDSGGINSEILQLLKPMCEVKTDFCQMLLPY 1850
1851 LIHDVLLQDTHESWRTLLSAHVRGFFTSCFKHSSQASRSATPANSDSESE 1900
1901 NFLRCCLDKKSQRTMLAVVDYLRRQKRPSSGTAFDDAFWLDLNYLEVAKV 1950
1951 AQSCSAHFTALLYAEIYSDKKSTDEQEKRSPTFEEGSQGTTISSLSEKSK 2000
2001 EETGISLQDLLLEIYRSIGEPDSLYGCGGGKMLQPLTRIRTYEHEATWEK 2050
2051 ALVTYDLETSISSSTRQSGIIQALQNLGLSHILSVYLKGLDYERREWCAE 2100
2101 LQELRYQAAWRNMQWGLCASAGQEVEGTSYHESLYNALQCLRNREFSTFY 2150
2151 ESLRYASLFRVKEVEELSKGSLESVYSLYPTLSRLQAIGELENSGELFSR 2200
2201 SVTDRERSEAYWKWQKHSQLLKDSDFSFQEPLMALRTVILETLVQKEMER 2250
2251 SQGACSKDILTKHLVEFSVLARTFKNTQLPERAIFKIKQYNSAICGISEW 2300
2301 HLEEAQVFWAKKEQSLALSILKQMIKKLDSSFKDKENDAGLKVIYAECLR 2350
2351 VCGSWLAETCLENPAVIMQTYLEKAVKVAGSYDGNSRELRNGQMKAFLSL 2400
2401 ARFSDTQYQRIENYMKSSEFENKQTLLKRAKEEVGLLREHKIQTNRYTVK 2450
2451 VQRELELDECALRALREDRKRFLCKAVENYINCLLSGEEHDLWVFRLCSL 2500
2501 WLENSGVSEVNGMMKKDGMKISSYKFLPLMYQLAARMGTKMTGGLGFHEV 2550
2551 LNNLISRISLDHPHHTLFIILALANANKDEFLSKPETTRRSRITKSTSKE 2600
2601 NSHLDEDRTEAATRIIHSIRSKRCKMVKDMEALCDAYIILANMDASQWRA 2650
2651 QRKGINIPANQPITKLKNLEDVVVPTMEIKVDPTGEYENLVTIKSFKTEF 2700
2701 RLAGGLNLPKIIDCVGSDGKERRQLVKGRDDLRQDAVMQQVFQMCNTLLQ 2750
2751 RNTETRKRKLTICTYKVVPLSQRSGVLEWCTGTVPIGEYLVNSEDGAHRR 2800
2801 YRPNDFSANQCQKKMMEVQKKSFEEKYDTFMTICQNFEPVFRYFCMEKFL 2850
2851 DPAVWFEKRLAYTRSVATSSIVGYILGLGDRHVQNILINEQSAELVHIDL 2900
2901 GVAFEQGKILPTPETVPFRLSRDIVDGMGITGVEGVFRRCCEKTMEVMRS 2950
2951 SQETLLTIVEVLLYDPLFDWTMNPLKALYLQQRPEDESDLHSTPNADDQE 3000
3001 CKQSLSDTDQSFNKVAERVLMRLQEKLKGVEEGTVLSVGGQVNLLIQQAM 3050
3051 DPKNLSRLFPGWKAWV 3066

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.