 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q62638 from www.uniprot.org...
The NucPred score for your sequence is 0.88 (see score help below)
1 MAVCGRVRRMFRLSAALQLLLLVAAGVQNSHGQGQGLGVNFGPFAGQAGG 50
51 GNPVGQQPPQLPQLSQQQQQQQPPPQQQQPFPAGGLPARRGGAGPGGTGG 100
101 GWKLAEEESCREDVTRVCPKHTWSNNLAVLECLQDVREPENEISSDCNHL 150
151 LWNYKLNLTTDPKFESVAREVCKSTISEIKECAEEPVGKGYMVSCLVDHR 200
201 GNITEYQCHQYITKMTAIIFSDYRLICGFMDDCKNDINLLKCGSIRLGEK 250
251 DAHSQGEVVSCLEKGLVKEAEEKEPKIQVSELCKKAILRVAELSSDDFHL 300
301 DRHLYFACRDDRERFCENTQAGEGRVYKCLFNHKFEESMSEKCREALTTR 350
351 QKLIAQDYKVSYSLAKSCKSDLKKYRCNVENLPRSREARLSYLLMCLESA 400
401 VHRGRQVSSECQGEMLDYRRMLMEDFSLSPEIILSCRGEIEHHCSGLHRK 450
451 GRTLHCLMKVVRGEKGSLGMNCQQALQTLIQETDPGADYRIDRALNEACE 500
501 SVIQTACKHIRSGDPMILSCLMEHLYTEKMVEDCEHRLLELQYFISRDWK 550
551 LDPVLYRKCQGDASRLCHTHGWNETSELMPPGAVFSCLYRHAYRTEEQGR 600
601 RLSRECRAEVQRILHQRAMDVKLDPALQDKCLIDLGKWCSEKTETGQELE 650
651 CLQDHLDDLAVECRDIVGNLTELESEDIQIEALLMRACEPIIHNFCHDVA 700
701 DNQIDSGDLMECLIQNKHQKDMNEKCAIGVTHFQLVQMKDFRFSYKFKMA 750
751 CKEDVLKLCPNIKKKVDVVICLSTTVRNDTLQEAKEHRVSLKCRKQLRVE 800
801 ELEMTEDIRLEPDLYEACKSDIKNYCSTVQYGNAQIIECLKENKKQLSTR 850
851 CHQRVFKLQETEMMDPELDYTLMRVCKQMIKRFCPEADSKTMLQCLKQNK 900
901 NSELMDPKCKQMITKRQITQNTDYRLNPVLRKACKADIPKFCHGILTKAK 950
951 DDSELEGQVISCLKLRYADQRLSSDCEDQIRIITQESALDYRLDPQLQLH 1000
1001 CSDEIANLCAEEAAAQEQTGQVEECLKVNLLKIRTELCKKEVLNMLKESK 1050
1051 ADIFVDPVLHTACALDIKHHCAAITPGRGRQMSCLMEALEDKRVRLQPEC 1100
1101 KKRLNDRIEMWSYAAKVAPADGFSDLAMQVMTSPSKNYILSVISGSICIL 1150
1151 FLIGLMCGRITKRVTRELKDR 1171
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.