SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q63358 from www.uniprot.org...

The NucPred score for your sequence is 0.98 (see score help below)

   1  MSAHEAGSSGRRRPATFHLHIYPQLPSAGSQTSCRVTATKDSTTSDVIRD    50
51 VVASLHLDGSKHYVLVEVKESGGEEWVLDASDSPVHRVLLWPRRAQKEHP 100
101 REDGYYFLLQERNADGSIQYLHVQLLAQPTAACRLVERGLLPRPQADFDD 150
151 LCNLPELNEANLLQSLKLRFVQQKIYTYAGSILVAINPFKFLPIYNPKYV 200
201 KMYENQQLGKLEPHVFALADVAYYTMLRKHVNQCIVISGESGSGKTQSTN 250
251 FLIHCLTALSQKGYASGVERTILGAGPVLEAFGNAKTAHNNNSSRFGKFI 300
301 QVNYLESGIVRGAVVEKYLLEKSRLVSQEKDERNYHVFYYLLLGVSEEER 350
351 QEFQLKQPQDYFYLNQHNLNIEDGEDLKHDFERLQQAMEMVGFLPATKKQ 400
401 IFSVLSAILYLGNVTYKKRATGRDEGLEVGPPEVLDTLSQLLKVKRETLV 450
451 EVLTKRKTITVNDKLILPYSLSEAITARDSMAKSLYSALFDWIVLRINHA 500
501 LLNKKDMEEAVSCLSIGVLDIFGFEDFERNSFEQFCINYANEQLQYYFTQ 550
551 HIFKLEQEEYQGEGISWHNIDYTDNVGCIHLISKKPTGLFYLLDEESNFP 600
601 HATSHTLLAKFKQQHEDNKYFLGTPVLEPAFIIQHFAGRVKYQIKDFREK 650
651 NMDYMRPDIVALLRGSDSSYVRQLIGMDPVAVFRWAVLRAAIRAMAVLRE 700
701 AGRLRAERAEKAEAGVSSPVTRSHVEELPRGANTPSEKLYRDLHNQIIKS 750
751 LKGLPWQGEDPRRLLQSLSRLQKPRTFFLKSKGIKQKQIIPKNLLDSKSL 800
801 RLIISMTLHDRTTKSLLHLHKKKKPPSISAQFQTSLNKLLEALGKAEPFF 850
851 IRCIRSNAEKKELCFDDELVLQQLRYTGMLETVRIRRSGYSAKYTFQDFT 900
901 EQFQVLLPKDVQPCREAIAALLEKLQVDRQNYQIGKTKVFLKETERQALQ 950
951 ERLHGEVLRRILLLQSWFRMVLERRHFVQMKHAALTIQACWRSYRVRRTL 1000
1001 ERTRAAVYLQAAWRGYLQRQAYHHQRHSIIRLQSLCRGHLQRRSFSQMML 1050
1051 EKQKAEQARETAGAEMSEGEPSPVAAGEQPSEHPVEDPESLGVETETWMN 1100
1101 SKSPNGLSPKKEIPSPEMETPAQKTVPAESHEKVPSSREKRESRRQRGLE 1150
1151 HVERQNKHIQSCREENSTLREPSRKASLETGESFPEDTKEPREDGLETWT 1200
1201 ETAAPSCPKQVPIVGDPPRSPSPLQRPASLDLDSRVSPVLPSSSLESPQD 1250
1251 EDKGENSTKVQDKPESPSGSTQIQRYQHPDTERLATAVEIWRGKKLASAM 1300
1301 LSQSLDLSEKPRTAGAALTPTEERRISFSTSDVSKLSPVKTSTEVDGDLS 1350
1351 AKKPAGHKKKSEDPSAGPDAGLPTGSQGDSKSAFKRLFLHKAKDKKPSLE 1400
1401 GVEETEGSGGQAAQEAPARKTLDVPSSQQHRHTTGEKPLKGKKNRNRKVG 1450
1451 QITVSEKWRESVFRKITNANELKFLDEFLLNKVNDLRSQKTPIESLFIEA 1500
1501 TERFRSNIKTMYSVPNGKIHVGYKDLMENYQIVVSNLAAERGEKDTNLVL 1550
1551 NVFQSLLDEFTRSYNKTDFEPVKGKAQKKKRKQERAVQEHNGHVFASYQV 1600
1601 NIPQSCEQCLSYIWLMDKALLCSVCKMTCHKKCVHKIQSYCSYTGRRKSE 1650
1651 LGAEPGHFGVCVDSLTSDKASVPIVLEKLLEHVEMHGLYTEGLYRKSGAA 1700
1701 NRTRELRQALQTDPATVKLEDFPIHAITGVLKQWLRELPEPLMTFAQYGD 1750
1751 FLRAVELPEKQEQLAAIYAVLDHLPEANHTSLERLIFHLVKVALLEDVNR 1800
1801 MSPGALAIIFAPCLLRCPDNSDPLTSMKDVLKITTCVEMLIKEQMRKYKV 1850
1851 KMEEINHLEAAESIAFRRLSLLRQNAPWPLKLGFSSPYEGVRTKSPRTPV 1900
1901 VQDLEELGALPEEAAGGDEDREKEILMERIQSIKEEKEDITYRLPELDPR 1950
1951 GSDEENLDSETSASTESLLEERAVRGAAEE 1980

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.