  |  Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. | 
NucPred
Fetching  Q63755  from www.uniprot.org...
The NucPred score for your sequence is 0.99 (see score help below)
   1  MHQNTESVAATETLAEVPEHVLRGLPEEVRLFPSAVDKTRIGVWATKPIL    50
  51  KGKKFGPFVGDKKKRSQVRNNVYMWEVYYPNLGWMCIDATDPEKGNWLRY   100
 101  VNWACSGEEQNLFPLEINRAIYYKTLKPIAPGEELLVWYNGEDNPEIAAA   150
 151  IEEERASARSKRSSPKSRRGKKKSHENKNKGIRTHPTQLKASELDSTFAN   200
 201  MRGSAEGPKEEDERPLASAPEQPAPLPEVGNQDAVPQVAIPLPACEPQPE   250
 251  VDGKQEVTDCEVNDVEEEELEEEEELEEEEEEELGEDGVEEADMPNESSA   300
 301  KEPEIRCEEKPEDLLEEPQSMSNEAREDSPDVTPPPHTPRAREEANGDVL   350
 351  ETFMFPCQHCERKFATKQGLERHMHIHISTINHAFKCKYCGKRFGTQINR   400
 401  RRHERRHETGLKRRPSMTLQSSEDPDDGKGENVTSKDESSPPQLGQDCLI   450
 451  LNSEKTSQEVLNSSFVEENGEVKELHPCKYCKKVFGTHTNMRRHQRRVHE   500
 501  RHLIPKGVRRKGGLLEEPQPPAEQAPPSQNVYVPSTEPEEEGETDDVYIM   550
 551  DISSNISENLNYYIDGKIQTNSSTSNCDVIEMESNSAHLYGIDCLLTPVT   600
 601  VEITQNIKSTQVSVTDDLLKDSPSSTNCESKKRRTASPPVLPKIKTETES   650
 651  DSTAPSCSLSLPLSISTAEVVSFHKEKGVYLSSKLKQLLQTQDKLTLPAG   700
 701  FSAAEIPKLGPVCASAPASMLPVTSSRFKRRTSSPPSSPQHSPALRDFGK   750
 751  PNDGKAAWTDTVLTSKKPKLESRSDSPAWSLSGRDERETGSPPCFDEYKI   800
 801  SKEWAASSTFSSVCNQQPLDLSSGVKQKSEGTGKTPVPWESVLDLSVHKK   850
 851  PCDSEGKEFKENHLAQPAAKKKKPTTCMLQKVLLNEYNGVSLPTETTPEV   900
 901  TRSPSPCKSPDTQPDPELGPDSSCSVPTAESPPEVVGPSSPPLQTASLSS   950
 951  GQLPPLLTPTEPSSPPPCPPVLTVATPPPPLLPTVPLSHPSSDASPQQCP  1000
1001  SPFSNTTAQSPLPILSPTVSPSPSPIPPVEPLMSAASPGPPTLSSSSSSS  1050
1051  SSFPSSSCSSTSPSPPPLSAVSSVVSSGDNLEASLPAVTFKQEESESEGL  1100
1101  KPKEEAPPAGGQSVVQETFSKNFICNVCESPFLSIKDLTKHLSVHAEEWP  1150
1151  FKCEFCVQLFKVKTDLSEHRFLLHGVGNIFVCSVCKKEFAFLCNLQQHQR  1200
1201  DLHPDEVCTHHEFESGTLRPQNFTDPSKANVEHMPSLPEEPLETSREEEL  1250
1251  NDSSEELYTTIKIMASGIKTKDPDVRLGLNQHYPSFKPPPFQYHHRNPMG  1300
1301  IGVTATNFTTHNIPQTFTTAIRCTKCGKGVDNMPELHKHILACASASDKK  1350
1351  RYTPKKNPVPLKQTVQPKNGVVVLDNSGKNAFRRMGQPKRLSFNVELGKM  1400
1401  SPNKLKLSALKKKNQLVQKAILQKNRAAKQKADLRDTSEASSHICPYCDR  1450
1451  EFTYIGSLNKHAAFSCPKKPLSPSKRKVSHSSKKGGHASSSSSDRNSSCH  1500
1501  PRRRTADTEIKMQSTQAPLGKTRARSTGPAQASLPSSSFRSRQNVKFAAS  1550
1551  VKSKKASSSSLRNSSPIRMAKITHVEGKKPKAVAKSHSAQLSSKSSRGLH  1600
1601  VRVQKSKAVIQSKTALASKRRTDRFIVKSRERSGGPITRSLQLAAAADLS  1650
1651  ESRREDSSARHELKDFSYSLRLASRCGSSTASYITRQCRKVKAAAATPFQ  1700
1701  GPFLKE                                              1706
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold.  Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus.  Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them).  The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation).  Another benchmark is available in the Bioinformatics 2007 paper. | 
| NucPred score threshold |  Specificity |  Sensitivity | 
 | see above |  fraction of proteins predicted to be nuclear that actually are nuclear |  fraction of true nuclear proteins that are predicted (coverage) | 
 | 0.10 |  0.45 |  0.88 | 
 | 0.20 |  0.52 |  0.83 | 
 | 0.30 |  0.57 |  0.77 | 
 | 0.40 |  0.63 |  0.69 | 
 | 0.50 |  0.70 |  0.62 | 
 | 0.60 |  0.71 |  0.53 | 
 | 0.70 |  0.81 |  0.44 | 
 | 0.80 |  0.84 |  0.32 | 
 | 0.90 |  0.88 |  0.21 | 
 | 1.00 |  1.00 |  0.02 | 
| Sequences which score >= 0.8 with NucPred and which
                are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%.  (PredictNLS by itself is 87% correct with 26% coverage on the same data.) | 
Go back to the NucPred Home Page.