SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q64511 from www.uniprot.org...

The NucPred score for your sequence is 0.72 (see score help below)

   1  MAKSSLAGSDGALTWVNNATKKEELETANKNDSTKKLSVERVYQKKTQLE    50
51 HILLRPDTYIGSVEPLTQLMWVYDEDVGMNCREVTFVPGLYKIFDEILVN 100
101 AADNKQRDKNMTCIKVSIDPESNIISIWNNGKGIPVVEHKVEKVYVPALI 150
151 FGQLLTSSNYDDDEKKVTGGRNGYGAKLCNIFSTKFTVETACKEYKHSFK 200
201 QTWMNNMMKTSEAKIKHFDGEDYTCITFQPDLSKFKMEKLDKDIVALMTR 250
251 RAYDLAGSCKGVKVMFNGKKLPVNGFRSYVDLYVKDKLDETGVALKVIHE 300
301 LANERWDVCLTLSEKGFQQISFVNSIATTKGGRHVDYVVDQVVSKLIEVV 350
351 KKKNKAGVSVKPFQVKNHIWVFINCLIENPTFDSQTKENMTLQPKSFGSK 400
401 CQLSEKFFKAASNCGIVESILNWVKFKAQTQLNKKCSSVKYSKIKGIPKL 450
451 DDANDAGGKHSLECTLILTEGDSAKSLAVSGLGVIGRDRYGVFPLRGKIL 500
501 NVREASHKQIMENAEINNIIKIVGLQYKKSYDDAESLKTLRYGKIMIMTD 550
551 QDQDGSHIKGLLINFIHHNWPSLLKHGFLEEFITPIVKASKNKQELSFYS 600
601 IPEFDEWKKHIENQKAWKIKYYKGLGTSTAKEAKEYFADMERHRILFRYA 650
651 GPEDDAAITLAFSKKKIDDRKEWLTNFMEDRRQRRLHGLPEQFLYGTATK 700
701 HLTYNDFINKELILFSNSDNERSIPSLVDGFKPGQRKVLFTCFKRNDKRE 750
751 VKVAQLAGSVAEMSAYHHGEQALMMTIVNLAQNFVGSNNINLLQPIGQFG 800
801 TRLHGGKDAASPRYIFTMLSSLARLLFPAVDDNLLKFLYDDNQRVEPEWY 850
851 IPIIPMVLINGAEGIGTGWACKLPNYDAREIVNNVRRMLEGLDPHPMLPN 900
901 YKNFKGTIQELGQNQYAVSGEIFVVDRNTVEITELPVRTWTQVYKEQVLE 950
951 PMLNGTDKTPALISDYKEYHTDTTVKFVVKMTEEKLAQAEAAGLHKVFKL 1000
1001 QTTLTCNSMVLFDHMGCLKKYETVQDILKEFFDLRLSYYGLRKEWLVGML 1050
1051 GAESTKLNNQARFILEKIQGKITIENRSKKDLIQMLVQRGYESDPVKAWK 1100
1101 EAQEKAAEEEDSQNQHDDSSSDSGTPSGPDFNYILNMSLWSLTKEKVEEL 1150
1151 IKQRDTKGREVNDLKRKSPSDLWKEDLAAFVEELDKVEAQEREDILAGMS 1200
1201 GKAIKGKVGKPKVKKLQLEETMPSPYGRRIVPEITAMKADASRKLLKKKK 1250
1251 GDPDTTVVKVEFDEEFSGTPAEGTGEETLTPSAPVNKGPKPKREKKEPGT 1300
1301 RVRKTPTSTGKTNAKKVKKRNPWSDDESKSESDLEEAEPVVIPRDSLLRR 1350
1351 AAAERPKYTFDFSEEEDDDAAAADDSNDLEELKVKASPITNDGEDEFVPS 1400
1401 DGLDKDEYAFSSGKSKATPEKSSNDKKSQDFGNLFSFPSYSQKSEDDSAK 1450
1451 FDSNEEDTASVFAPSFGLKQTDKLPSKTVAAKKGKPPSDTAPKAKRAPKQ 1500
1501 KKIVETINSDSDSEFGIPKKTTTPKGKGRGAKKRKASGSENEGDYNPGRK 1550
1551 PSKTASKKPKKTSFDQDSDVDIFPSDFTSEPPALPRTGRARKEVKYFAES 1600
1601 DEEEDVDFAMFN 1612

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.