SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q68S16 from www.uniprot.org...

The NucPred score for your sequence is 0.83 (see score help below)

   1  MEVLMAERANLVFHNKVIDGTAMKRLISRLIEHFGMAYTSHILDQVKTLG    50
51 FQQATATSISLGIDDLLTIPSKRWLVQDAEQQSLILEKQHHYGNVHAVEK 100
101 LRQSIEIWYATSEFLRQEMKPNFRMTDPFNPVHIMSFSGARGNASQVHQL 150
151 VGMRGLMADPQGQMIDLPIQSNLREGLSLTEYIISCYGARKGVVDTAVRT 200
201 SDAGYLTRRLVEVVQHIVVRRKDCGTVRGISVSPRNGMMPERVFIQTLIG 250
251 RVLADDIYLGPRCIATRNQDIGSGLVNRFITFRAQPIYIRTPFTCRSTSW 300
301 ICRLCYGRSPTHGDLAELGEAVGIIAGQSIGEPGTQLTLRTFHTGGVFTG 350
351 GTAEHVRAPSNGKIKFNEDLVHPTRTRHGHPAFLCSIDLYVTIESEDIIH 400
401 NVNIPPKSFLLVQNDQYVESEQVIAEIRAGTSTLNFKEKVRKHIYSDSEG 450
451 EMHWNTDVYHAPAFTYGNVHLLPKTSHLWILLGEPCRSDLVALSIHKDQD 500
501 QMNAHSLSVKRRYISNLSVTNDQARHKFFSSDFSGKKEDRITDYSELNRI 550
551 GHCNLPYLAILHANSDLLAKRRRNRFIIPLQSIQEHENELMPSSGISIEI 600
601 PIHGIFRKKSIIAYFDDPRYRRKSSGITKYGTIEVHSIVKKEDLIEYRGV 650
651 KEFRPKYQMKVDRFFFIPEEVHILPGSSSIMVRNNSIIGVDTQITLTTRS 700
701 RVGGLVRVERKKKRIELKIFSGDIHFPGETDKISRHSGVLIPPGTGKTNS 750
751 KESKKWKNWIYVQRITPTKKKYFVLVRPVVTYEITDGINLATLFFPDLLQ 800
801 ERDNVQLRVVNYILYGTGKPIRGFYDTSIQLVRTCLVLNWVQDKKSSSIE 850
851 EARTSFVEIRINSLIRDFLKIDLAKSPILYTGKRKDPSGSGLISENGSDR 900
901 TNINPFSSSFFYSKARIKESLNQNQGTIHTLLNRNKECQSLIILSSSNCF 950
951 RMGPFNDVKYHNVIKESIQKDPLIQIRNSLGPLGTALQIANFYSFSHLIT 1000
1001 YNQILVTNYLQLDNLKQSFQVLKYYLMDENGKIYNPDRCCNIILNPFNLN 1050
1051 WFFLHHNYCEETSTTMSLGQFICENVCIAKNGPHLKPGQVLIVQVDSVVI 1100
1101 RSAKPYLATPGATVHGHYGEILYEGDTLVTFIYEKSRSGDITQGLPKVEQ 1150
1151 VLEVRSIDSISMNLEKRVEGWNECITRNLGIPWGFLIGAELTIVQSRISL 1200
1201 VNKIQKVYRSQGVQIHNRHIEIIVRQITSKVLVSEDGMSNVFLPGEFIGL 1250
1251 LRAERMGRALEEAICYQAVLLGITKASLNTQSFISEASFQETARVLAKAA 1300
1301 LRGRIDWLKGLKENVVLGGMIPVGTGFKGLVPPSRQHKNIPLETKNKNLF 1350
1351 EGEMRDILFHHRKFFDSCLSKNFHDTPEQSFIGFNDS 1387

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.