SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q696W0 from www.uniprot.org...

The NucPred score for your sequence is 0.98 (see score help below)

   1  MRKVTEEKRHSSSMNSSTVETSFIAAPPVFLRKLKWAAVAAGCDVRLRVC    50
51 VGGNPRPTLHWYHNDDPLVIDHEDYDGLWIRDCQQADGGLYTCVAVNHLG 100
101 EARTSAVLAVLDLEEDSNSTEDESAEPHVSMEMKEQFMPPQGEAINSQPT 150
151 GRGRAMLSHIPSDGLVVEREMRALGSRAPGLQEPLSPGRGQLDFKTSEAT 200
201 PFVQTQPPHKAQASITKSDVDATIDSTATKIKGTKTAMNGAEVSIKSSKI 250
251 TGSHQSGGLQDPSSIQTPKVSQASSKILDRVRAFEEQSHNSNMPKVSSRL 300
301 SWGFNRTSSCNSEDETCKAGKFQANTKSDVALKRSFFKQKASSLEEQSTY 350
351 VQKNFQSKLSEELHRIKKLVGKSNIKKAFSMEQLTQTDKQSSVSTESVPT 400
401 QVIQKSEETGKHFTNLKAVPDAKERWTTLPKEQSSRLPKINLADKTKQPE 450
451 NETPPEMNENQENNSKPTQLLDGQVLNEKVSFIPGQCSPMLPRTNVSRKW 500
501 PKSPAQPMVKDGLVQAPQKPPRLLESISTPPTPFKMTIPTIVVENKPVDE 550
551 ELDQKEGQIMRQNRDALDDFHTSVEKSIAEAPMSELPRKDALGTAGSELL 600
601 QCIIKENTVARAPAESLLIITRPMQDVKVKAGETALLECFIAGSQAVDVD 650
651 WLANGKLIQPALFDCKMQFDGHRCRLLFKSAHENDSGCYTCKLSTAKEEL 700
701 ICTANLLVIPSKEPLFTRKLEVLEAIEGRSAQFDCKVSGCPPPEVTWTHC 750
751 EKPLVESDNIHILNVNGHHSLLITHVNKESEGLYTAIAQNVHGKAASSAE 800
801 LYVQEPRPAISTHMSRLEKMPSIPEEPEVPEGEVERRTMPDFIKPLSDLE 850
851 VIEGKEAVLKCRVTGLPYPKITWYHNGKKIESTNDRKMTQYRDVHSLVIQ 900
901 SVCHDHSGVYKCVISNKVGKAACYAHLYVAVSLPEPPDGPPVIESVTGRM 950
951 ILLSWKKPKNLDPSIDPASLMYVVQQQVLGSTQWTTIASSLTDTSYTVTS 1000
1001 LSKGVCYSFRVLSTTGKTLSKPSQPTDLVQLVDRGEYFRKAPVIIDKPDI 1050
1051 VYAVENQPVTITITINHVQATCTWKRRGVVLVNKLGALEMTTPDDDQHAL 1100
1101 HIAKVKSTDVGQLIFMANNQYGSDLGTLQLVIAVPPIFETIMEDLDVCVG 1150
1151 ETCHFAVVVDGKPDPDILWYKDGVLLAESSHLTFVYDDRECSLVVLNAQP 1200
1201 EDVGVYTCTAKNLAGSVSCKAELTVHTAQNVEEEEEQMEDEATILRRMRM 1250
1251 LTDYYDIHKEIGRGAFSYVKRVKHKNDQSFAAKFISVRAKKKTCALRELA 1300
1301 LLAELDHKSIVRFHDAFEKRRVVIILTELCHEELLERITKRTTILESEVQ 1350
1351 SIIRQLLEGIEYLHQNDIIHLDLKPENILMADQKTDQIRICDFGNALKVK 1400
1401 PNEELYCKYGIPEFIAPEIVNQSPISKSTDIWPVGVITYLCLTGVSPFAG 1450
1451 ENDRDTLLNIRNYNVAFEESMFKDLCREAKGFIIKVLVSNKLRPDATECL 1500
1501 LHPWFKSLTKGKSINTTLHKQVLARRKWQCSLIRYGSKMVMRSISELLDD 1550
1551 SSSHVSLAVPRNLKDGSPPPSSSSDSDEDIDELPFIPMPHTMMFSGSRMS 1600
1601 LTEIHEVDDKVIRGSNESYKKNLNQLDDIPESQIIAGQKNEDYLKNPKRT 1650
1651 DNCLQRGSSVEVDQVASKTRRGLMRRGSSADSALLLQITPEDNEIKDTTE 1700
1701 DSQKHMKKAVSMELPHRSSSPKTAKLSKEDYALKLDLMRQRLLKGGTVNK 1750
1751 NMSGLRGPLLETLGVDDERRTSSLDRNFRNARLNASGDSGTFNNDSSEET 1800
1801 YQKPAFRKRSSLRDENSESISLHRRSGAPLEIPSSSTGDHNVLKIKSTIL 1850
1851 DENKANLPPLFPRDISSKPPTPVLENKQVSKEEANSDVLIMNSSRSAFNL 1900
1901 EDTEIKVEEMKEQDSVPENMNKSTEFPLDILPHDISSNYCSKLQANGKKA 1950
1951 SFLTPLPTPVLKISQPNIQPTAGRPGVFASAFSAHQPNLRSDIKNIDSEE 2000
2001 IFEARFKKRESSLAHGLKRLTRTKSEESSPVPQRKSDEVVYRPGPVGSPL 2050
2051 EFGSTGLKEKSKSVQDLREVDKEVGLGLIGRFSMRARKLQPIDKKEKKEI 2100
2101 SDSVTNKRQLTWATRRSKSLDKKENFETNKENLEKDTKKIAESPVLAVRR 2150
2151 KFESNVSGIFDRVHSRSKDRKDKETKPHIDAEAPNVEKQDMKKINDSPVL 2200
2201 ALRKKFETKVSGISYRKQSQSEGEGTKFEGQKTPLFSRHHRSQSDGLIHK 2250
2251 KMDIPENQLPLQTTTISSKETLNSSSSAHSIESSQTPETEIRSRWDRWGL 2300
2301 SRGKRDRTPSNSRAPATPKEDFPPVFHIALKDHVLLEGNPVTLSCLPAGS 2350
2351 PEPKILWLKDKKPLKLCDGMNLEACPDGRQLLMIMNISKKDAGIYECVAT 2400
2401 NNLASVTTSCILTLACIPNCPGTPEIRQIYNNTVLVQWKPSDTKVPCTYT 2450
2451 IEKKFDGDDKWLTEATGVTDCFFNSSELPSGSTIRFRVACVNKAGQSPYS 2500
2501 NESDGVSIDTKVTPQHQPAKMKTHSPASFPAMTAAVATSAFSLSLPSVFS 2550
2551 QSISPTPAQSADVSNTFLEVQSSPKMSTPLDLPKPASSVNTMPPITQTQT 2600
2601 VSPRSYTAPPSIGRSISPVPTYVPATCSLAPTPVSPSVIVVSSISPIGEG 2650
2651 ASSPTPETPTGQAVSSTKSETTLRQGVPQKPYSFLDEKARGRFGVIRDCR 2700
2701 ENATGKMFIAKIIPYDQQTKQTIIKEYEILKSLRCERIMALHEAYITPRY 2750
2751 LVLITEYCSGKEILQNLIDRFCYSEDDVVGFIVQILQGLEYLHNCKILHL 2800
2801 DIKPDNIMVTNLNVIKIIDFGSAQRFNPLSLQQCSRYLGTLEYMAPEMLK 2850
2851 GDLVGPPADIWSLGVLSYIMLSGRHPFEDKDPQLTEAKIHEAKFDSTKLY 2900
2901 PKVSQSASTFLKKILNSYPWCRPTIKDCLNHSWLHDSYLKKLRRQTLTFT 2950
2951 TTRLKEFMGEHQRRCAESATKHKVILRVYQGGPSSPASPTKYTTQ 2995

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.