 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q6C8M8 from www.uniprot.org...
The NucPred score for your sequence is 0.74 (see score help below)
1 MLSASQFLKHRVSCLPMLNKVESDSTDGDPDDACQHPHDCNIFSVLVNGA 50
51 TDRLEGFFDESDEEDGDEVETPSTTTTAVSPSATMSAPSPTATAPTPHSG 100
101 THTPKSPLHSISHCPSFNSVAQALPHSLSPHSLCHTSSHEASRRGSAEQP 150
151 SRTQSELARRIKTENILNSFHDSLEAAYEKCHGGANPEEHQSNKTEYFQQ 200
201 KLKGFAALDVDEQLIADYPVWLLKNVLIQGHLYITAKHMCFLSYLPRRQN 250
251 ANIRSGTLVKARKRSLREGTRYWCVLKNDSFSYYPDSTDVYFPAGTIDLS 300
301 EALAAELCDDEGDVTEPESFRIVMPKKSVLFKADSHSAAHEWVKALQKEI 350
351 FRAHNQGDTVRIVIPLQNIVDLEKTKIFEFATTIKTSVVESNETYAIDEY 400
401 IFTFFKFGDDVLRTLTENGVEISGGNFSPRQSQLAVGHKHVTESVRDSTL 450
451 LHASGHHHHFFHSAHHESDGKSNSKSHTSSRSHTPRNLTPQVTGEQPHER 500
501 DEKRDSKLPRLPKFLRRFKDKVDDKCDDKPTLVPSFLKSRASSRRNSAEG 550
551 SDRPNLASQRTSSSTLFPSAPPTPGSQPTTPGVHAPGSSTPGGSYGTTTP 600
601 GTPASADSVSLAGTPGVAAPVGDIEGLNGNPMPAGIAAELKEKRKSGGAT 650
651 SSGAATGATTPGGAAAPGSTGNSSPGTPGGLGGPGAVGAGGPGVMGGAES 700
701 APAGTVPQQSHHAGISVVAPHDPAAAAAAADAAAPFTRGPGSGIPEIQDD 750
751 SDSSDDDHWGHIGTAEVDEDPEQDTFKKKNKRFSTLSKVSDLWSGSTKHY 800
801 GKHHTERLGDDDDKHLASAEEITESNERFQKRFALGTEERLIASYHCHLH 850
851 RGGIPTYGKMYVSTNYVTFRSFLRTKTLMIVPLKVVENATKDSGFKFGYS 900
901 GLVLTIQGYEEIFFEFASASHRDDAEVMLLRQLDIIRPHINDDIKSDDQY 950
951 MLQSARLCTYEDALKAEANVEMPPVIIDGNLASVLPGLVTPQSKMLFTLL 1000
1001 TIGSRGDVQPYISLGKALIEEGHRVRIATHSEFKDWIEGYGIEFKEVAGD 1050
1051 PSELMKIMVDHGVFSVSFLRDAASKFRGWINELLASSWEACQGSDVLIES 1100
1101 PSAMAGIHIAEALQIPYFRAFTMPWSRTRAYPHAFIVPDQKMGGSYNYLT 1150
1151 YVMFDNVFWKGISGQVNRWRKKTLHLPRTNLDHMEQNKVPFLYNVSPAVL 1200
1201 PPPVDFPDWIKITGYWFLDEGSKDYTPDDKLCRFMEKARNDGKKLVYIGF 1250
1251 GSIVVSDPTALTKSVVESVLKADVRCILNKGWSDRLGKKDAKEPEIPLPE 1300
1301 EVLQITNCPHDWLFPQIDACVHHGGSGTTGAGLRAGLPTIIKPFFGDQFF 1350
1351 YANRVEDLGAGIHLRKLNVSQFSKALWEATHNERIIAKAAAVGRQIRSEN 1400
1401 GVISAIQAIYRDLDYARSLVQKKRGYTPTSDKEEETWTLVDDIERQMQDE 1450
1451 VEKHNL 1456
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.