| Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q6CVK3 from www.uniprot.org...
The NucPred score for your sequence is 0.96 (see score help below)
1 MSDKEDEKQSQPVLKDDKQDQTEEPAIDDNVNGDEGPSDEEEGDDVFDSS 50
51 EEDEDLDNDEEEAQKVREGFIVDDDEEGGEEDEVVKKKSRRKRRAREEEN 100
101 EALDEDDLDLLMENAGFKRPSASEAAKQRSGKLKRLKRVGDDEEESASAE 150
151 PESEVARTNKLDDFFSEEEEEEELEDDGTGRAPSRKGVEKTVTLADDMDD 200
201 FIEEDEFSDEDEEARKFRIAEKKRIKEQRLAQPTQITGLSPDKVDEMFEV 250
251 FGDGHDYDWALELENEEELDRLEESSENEQDENELGIDSKRKKKLTLQDI 300
301 YDLQDLKKNLLTEEDMNIRKADIPERYQELRTGLKNYGKLSPEDLELEKN 350
351 WISDKIAVDKNFDADYDTTEFKEAIGNAINFIQQENLEVSFIYAYRRNYI 400
401 SSRSKDGFVLIEDDLWDIVFYDTEFHSIIYKRDYVKTFYEKLDIHDPIVD 450
451 EYFSNQSMTELNSLQDIYDYVEFKYAQEINDVLLSTQQDATSKKHLKNSS 500
501 YEKFKASALYQAINDTGITAEQVGENISAEHQLHPVVDHPSLKPTDSVAN 550
551 ILEGPEAKDLQIFSQNPKLALETIEKYYALELSKNPKVRQKIRDDFYKYY 600
601 IVDVALTSKGRKEIQRGSPYEDIKYALGRTPAHFRSEPDVFLRMLEAESL 650
651 HLMNIQIHVSSQDQYTNHLFQTSLETSNTSEIASEWNSFRRDAFDSALNK 700
701 VFSDVSQEIKDELKKTCLRLVTKSVRHQFMFKLDQAPFIPNPKDPKIPRV 750
751 LTITCGQGKFGSDAIIAVYLNRKTEFVRDYKIVENPFDRKEPELFENALD 800
801 DIIQHCQPNVIGINGPNPSTQRLYKKIQEIVQKKQIVDNRGSHVPVIYVE 850
851 DEVAVRYQSSERAAQEFPSKPTLVKYCIALGRYIHSPLLEYANLTNEELL 900
901 SLSIHSHQSLLTRELFLQALETSFVDIVNLVGIEVNKATDNHYYAKALRY 950
951 IAGFGRRKSADFLESLQRLNEPLLARQQLITHDILTKTIFMNSAAFLYIS 1000
1001 WNEKNQRYEDLEHDQLDGTRIHPEDYHLATKVAADALEFDPDAIAEKEEQ 1050
1051 GTMSEFIELLREDPDRRTKLESLNLEAYAEELEKNTGQRKLNNLNTIVLE 1100
1101 LLEGFEELRNDFHPLHGDEVFKSLTGESEKTFFKGCIIPVRVERFRHNDI 1150
1151 YGVTNSGVECVINAQRHIGAQLKRPAEEVYEIGKTYPAKVIYIDYDNISC 1200
1201 EVSLLEHDIRRQYVPIHYSKDPSIWNVEQEMKDQEIEKKLALEEARAKRT 1250
1251 HRVINHPYYGNFTGPQAEDYLRSRERGDFVIRQSSRGDDHLAITWKLDKD 1300
1301 LFQHVDILEKDKENPLALGKTLIVEDQKYHDLDQIIVEYLQNKVRLLNEI 1350
1351 TSNEKFKKGTKKEVIKFIEDYSKVNPNRSVYYFSFNYEHPGWFYLMFKIN 1400
1401 AQSQLYVWNVKLTHTGFFLVNYNYPTVIQLCNGFKTLLKSSSRNKTQDNN 1450
1451 NNNSGGYYGY 1460
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.