SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q6FK48 from www.uniprot.org...

The NucPred score for your sequence is 0.96 (see score help below)

   1  MSKNNKLNGKDNRQSKIEKLSELKLRHDQLTNELYHLHEYISLVEYDPFY    50
51 IPNSENYERLLEEKDVTWGSIFQEKKQLHNESSGKKVRRSVRHLRDSGSS 100
101 TINELDTMSENDINLLKEVDILAKQKLQDLKLQFSNSHIKKKGNTKRAKI 150
151 VKQVPNHQDKSESPQISERDVKTVVKDLKPNHRGSEIKPEIMESSDVKNE 200
201 IENCDFNEKQLKLYKDDDIASESDFYFTTSSEDELPNKRRGTIKRRKRIN 250
251 LYVNPPKAVITNPDNIANSHYPTLHEYLDSFKILEDDMTNEEYNTFIKEQ 300
301 QRFAKMIKKGIETGALKYDPVTETVQPSARKVPNMFSHAKVDPIQYMYKE 350
351 QNLHIHQEHLINQGLFSSKLVQNRKKQRIAGAKKIAQMIEQHFKHIAGAE 400
401 DRRLKENEKQRKAIARNIIQSVKKRWNLAEKAYRILKKDEEEQLKRIQGK 450
451 EHLSKMLEKSSKLLGAQLKQHPNEDDIENSTSDDFSSTGDSDNLSSSSDE 500
501 ESDDEINDLSEDQKNNINELKTSSTSAFSSPEISSPSKNPDLGLNSLLTN 550
551 DFENESNSSDTNEEFIMGDSDTSHSDDENLTDDSEDSNDGEHDTTSDNEK 600
601 SDLFPADTTNDPLAVQDVPTPSLLRGTLRTYQKQGLNWLASLYNNNTNGI 650
651 LADEMGLGKTIQTISLLSYLACEKHNWGPHLIVVPTSVLLNWEMEFKRFA 700
701 PGFKVLTYYGNPQQRKEKRKGWNKPDAFHVCIVSYQLIVQDQHSFKRKKW 750
751 QYMVLDEAHNIKNFRSTRWQALLNFNTQRRILLTGTPLQNNIAELWSLLY 800
801 FLMPQTVIDGQKVSGFADLDAFQQWFGRPVDKLIETGGTYEQDNETKRTV 850
851 EKLHQVLRPYLLRRLKADVEKQIPGKYEHIVYCKLSKRQRFLYDDFMSRA 900
901 QTKATLASGNFMSIVNCLMQLRKVCNHPDLFEVRPIKTSFLFGESVIARY 950
951 SERANSITRRIHFHDKDTLVDLQNINLQFTNNDLEKTSYHTNTINKLACI 1000
1001 NEFVEEVQKLRKQNAEEERQKSRHLKINTQNISNFYEEFMQQKLDEQENK 1050
1051 INFIGYLNSQRCSRKTVYGMNLIRLLEMPHVSNNCIDDPNYDDLIKPLQT 1100
1101 RLLDGRTTIEKFAVLTPGAVTSNIGELTLGMDEFVTPNSKSGIIPYEELV 1150
1151 QLDNPFHQVQTKLTIAFPDKSLLQYDCGKLQKLAILLQQLKDGGHRALIF 1200
1201 TQMTKVLDILEQFLNYHGYLYMRLDGATKIEDRQILTERFNSDPKITVFI 1250
1251 LSSRSGGLGINLTGADTVIFYDSDWNPAMDKQCQDRCHRIGQTRDVHIYR 1300
1301 FVSEHTIESNILKKANQKRQLDDVIIQKGEFTTDYFSKLSVKDLFGSDVV 1350
1351 GDLPVIDTKPLLGSDSEAIKDPKKLEKLLAQAEDEDDVKAANSALREVNV 1400
1401 DDEDFDESSTNKTGGNILNGDDIDEDVDEYEGTNHVEEYMLRFIANGFYF 1450

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.