SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q6FLB1 from www.uniprot.org...

The NucPred score for your sequence is 0.96 (see score help below)

   1  MSDQESASLREEKNEIINGMGSGAPSDEEEGEDVFDSSEEEEEDDEDEAR    50
51 KISEGFIVNDEDEDEDEDDENVADKKKKRRHKRRAREEEDDRLSEDDLDL 100
101 LMENAGVKRPTTEGSSGGKLKRLKRVGDEVESGAADREQESSQEKESSRL 150
151 NDFFSDDEDEEPYDEENRERSRGSREYDRGESNHQGDNRKSGMLDELDDF 200
201 IEEDEFSDEDEETRQQRLLERKMMREQRMKAPTKITGLSSDKIDEMYDVF 250
251 GDGHDYDWALEIENEELEGGDINEQSEEFDEETGMTKSSKKKISLQDIYD 300
301 LQDLKKNLMTDEDMLIRKTDIPERYQELRSGLVNHGNLSDNDQELEKNWI 350
351 SEKIAVDKNFSADYDLTEFKEAVGNAIKFITKENLEVPFIYAYRRNYISS 400
401 RERDGFLLTEDDLWEIVHLDIEFQSIINKRDYVKRFYSELGISDPLVDEY 450
451 FKNQSTGSVAELNSLQDIYNYLEFKYAQEINDNLQKESDKSGKKHLKNSN 500
501 YEKFKSSALYKVIEAVGVSADQIGNNISSQHQIHIPKDHEALKPLELIEL 550
551 VLNENAGDLQVFLSNIKLAMDTIQKYYSWEISKNTKVREKVRADFYRYYL 600
601 VDVVLTTKGKREIQRGSLYEDIKYAINRTPLHFRREPEIFLKMLEAESLN 650
651 LMTLKLHMSSQKQYVDHLFQIALETTNTSDLAIEWNNFRKAAFTQAIEKI 700
701 FNDIAQEIKDDLEKTCQKLVCKVVRHKFMTKLDQAPYVPDLKDPKLPKIL 750
751 TLTCGQGRFGSDAIIAAYVNRKGEFVRDFKITENPFDRSNPDKFEEVFED 800
801 IVQTCQITAIGINGPNPKTQKLFKKLIEVIHKKNLVDSKGTHIPIIYVED 850
851 EIAIRYQNSERAAQEFPNKPPYVKYCIALARYMHSPLMEYANLSPEELKS 900
901 LSIHPFQSFLSPEYLNRAIETAFVDIVNLVGVEVNKATDNSYYASVLRFV 950
951 SGFGKRKAIDFLESLQRLNEPLLARQQLITHNILHKVIFMNSAGFLYISW 1000
1001 SKKRQRYEDLEHDQLDSTRIHPEDYHLATKVAADALEYDPDTIAEKEENG 1050
1051 TMSEFIEFLREDPNRRSKLESLNLESYAEELEKNTGQRKLNNLNTIVLEL 1100
1101 LDGFEELRNDFHIMQSEEVFSSLTGETDKTLFKGCVIPVRVERFWHNDIV 1150
1151 CVTNSEVECIVNAQRHLGAQVRRPPNEIYELNKTYPAKVIFIDYPNITAE 1200
1201 VSLLEHDVKNEYNPLTYSKDPAIWDLKQELEDSEEEKKVTMAESRAKRTH 1250
1251 RVINHPYYFPFNGKQAEDYLRSKERGDFVIRQSSRGDDHLAITWKLDKDL 1300
1301 FQHVDIQELEKENPLALGKVLVVEGQRYHDLDQIIVEYLQNKIRLLNELT 1350
1351 SNEKFKAGTKKEVVKFIEDYSKVNPKKSVYYFSLNYENPGWFYLIFKLNA 1400
1401 ESKLYIWNVKLTHTGFFLVNYNYPTVIQLCNGFKTLLKSSNTRNRSGYR 1449

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.