 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q6FRZ9 from www.uniprot.org...
The NucPred score for your sequence is 0.84 (see score help below)
1 MENYQIRTLQDQLTSSKLRDRNAGLQELQSILKDNPGFIANEQINGLLNT 50
51 LLSLLENEAGKYIDSIEDDTDSRQRKENISISRFSNITYTLRLFIETVIE 100
101 KFKLSHLKLTISAVKDLFYNDARIIVPVINDVTYCILAIVKSEIFGNKIG 150
151 PSQWLDVAEYTLWLIKITSSNRSNIRALTNSLDTFYVLLIKGSISLSKVA 200
201 KEALVIITNLIVFEKGETATTNVLLSISSNLVARLHCQHYYDTTSLIIEC 250
251 WKLYTRIGKTNNFNLLNDISKIDIFGGGLLQNQIPIMPGQEIMGSRISHS 300
301 VVLSTLQDYIPMKVKEMLDVDHSLTIGIYDDLNNSNMDLTYNTFAKTHCK 350
351 DLAWLRLFGLYDTLCLYYRLSNQERENNATQILKKIKYEGSLQSNLNQCN 400
401 SLLDYSQSLLESGDPLIQLLGCKLFFLLNLDHPIACNTELIDRLCINTNN 450
451 ISLTSWHLACIFTNISYDLWNFDETLYLKVLKYITPLLSTSEVNIMACLI 500
501 FNKLLHSLTREPIDELSSLVNSIIASPDSVLPIEISSVTCEAWQHIFVFA 550
551 INNLKVDNSLLLDSFSKWINHNITQTIHIEHLKLIFEFFLWSLDVVVGST 600
601 SHNKQHNTYNLLNLKTSDSALAIWYFYENQRKFLTQTIQTSSQASVNTKS 650
651 MVCPITSTNIKIQWLLNIIDNYFTTSKNHSLKYTFAISLIYFINFIEKSG 700
701 KVYTYLNQELNQRLNSILIELDFLSFDKWEEGKQFIEIICNQETFFNRLH 750
751 NDVVFKDNILLSLINLFEKEYSHFLNADNGSTAKTGNDIYLNQRSILRFR 800
801 TDIKLMTQFFTCVDSNVPGKIGIYLDRLLLYSMGPNESLVLDELLSWVTN 850
851 PSNNQYYEVHSLEKLCQFLAKSLLNSKYQLSDFSMIRLGLFLTSTIELWV 900
901 NVKYNILNSDCNDFLIWITNNLVQNNFGETGTFVVLIRLFISVLKHNSTV 950
951 NSSCAIKTQDLYSMLIFCMRNVAYSTLGNIVDELKAYMSKKSHKNRKTIL 1000
1001 DDLVELFEPMPESVEKAASSCFVLFGLLDCNDTNFVYTLDIFSNYGNIPH 1050
1051 ISFFLKKAVKNYVNNYYQGNKIQLLNVHILEVIRQWTKRNDTDRQLYFNS 1100
1101 VIGSLFGFGSIQEFERQYNREICALIFSRSDSESLERNFFSDRNTSKCEM 1150
1151 LRRSLYLLIPLSYYDNGVGDMVFNKLKDSFRGQLESVLSSNFIIVMRYAL 1200
1201 KLCDCSDYTSVLNEMQRPNQSSSLLELFMDSEMKNAINRMNIYITVHSVI 1250
1251 KIFKNCGRSRQTLLLDLRTLILWIISDIQKSESSWEQNNHLRQLQLLVFL 1300
1301 YEDTFLQSVLHIELMNWLSYLLKIENIEADVFLLLNCLLSLIKPNSLDKP 1350
1351 DSLTLFFLNVLHFYVRNKECLKIGDEDMNMLSNNLSTVNSIALKLLTNGQ 1400
1401 VTDLIYNQVGDLTSQMYFAEEVELFALLMTFAPPMPDYVSHKMNKKFIEY 1450
1451 VYKSNNLIDIDNFSLWFSDYSTQYSSLILELEENSSFCEKDGFGIDDMEI 1500
1501 VYDFSDSAVSAMYSVLFRSLISIKPTIGFKSFALSNIICHLISINILKDK 1550
1551 DLLSKFLRATKMKIAFSAKEIDETIIEHFGKSNCGCVISEHYLESEFFDT 1600
1601 NIPYKDWLVKLCMFFISQISLNSKEIQWFIPLCYESMDFCKQNVCIFFLA 1650
1651 AFSFDHRRMSSTWKHIFSRLNDLTMASDCLAKLTLLLSFIRLIRSGALQG 1700
1701 RKEYSNLYQKIEFKGVIDAALKIKDSKFALQLFEEAYMCENGDYDVALLT 1750
1751 SIYEQLDDVDMLYALPTPISLNGFIKNANRLSPHSLKALQLNGAYFDANF 1800
1801 NHLVDNGSHQLVNTLTGMGFNALADIADLRTSCDNPADAYLRCLQLDKWD 1850
1851 LPKPKAIDCKIVSFYNTAYDLRNTNIEFVDLLQNAEIQLYKAKANFSSKL 1900
1901 EWFETIREYVKTKRAIISLKTDTDISRFKIDHVINPDRYLENALISDIKI 1950
1951 NWQFRYLMLKIYVEREKFANEAMKCIPILELIHQTELSVDFHIQQTSLSR 2000
2001 ILSMEAAMKRFHIADTNLVEQLSRHVSYVTALALREFGETKAPLTILSKL 2050
2051 LSDKSYKLNYNTFVSDDEVRAQLIWDSYQAKVKSGIQIFENDVEHWDVSI 2100
2101 NNIRSAPDTIYKVANFLNLEISRLNGSDQLKEKQKSYRRTRQELKDIESV 2150
2151 VKSSNLSNEELLVGQKHYHNLKTHMENDRLAIENICLTRKKLIKRALDYY 2200
2201 VQILILTNNYDYDVLDRFCGLWFENDDDDDINTDLTSKLSQIPTWKFLPW 2250
2251 VNQFTSKLSLLKSKFQKQLWYIMKRLLYKLPFETGYAVINLQLYEKYSDK 2300
2301 LDEKISEKIKAANLIFDQLQNSQISVKEGEYLRTIQEFCYATLEIAELKV 2350
2351 KGKNAQISLETLNIGRYWITELPKKNLPLPTVTRTINSSQYTLDSSRNIV 2400
2401 KVIGNITITSTGLSLPKVMTLLLSDGSRHKVVIKYGSDDLRQDAIMEQVF 2450
2451 QQVNKIFGKDVEMRRSDLHMRTYNVVPLGPKAGLIEFVNNSLSLHSILTD 2500
2501 IHKDDNYSWLEARRSMKDVQSKSDKERILTYLDITKKISPKFRNFFFNSF 2550
2551 IDANGWICAKRKYTKGVATSSMVGYILGLGDRHLNNILIDTTTGEPIHID 2600
2601 LGIAFDQGRLLKIPELVPFRLTRDIIDGFGITGVEGIFRRTCEQVLNVLS 2650
2651 RDSEKVMCVLNILKWDPLYSWAVSPFKKHKYMYDDNLEGHMTTATNNSKV 2700
2701 IERKLTPKLDSDENQQSYRALKGVQEKLDRNGLTIEATVEKLIQEAVDES 2750
2751 NLALIFNGWSPFY 2763
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.