 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q6IV68 from www.uniprot.org...
The NucPred score for your sequence is 0.71 (see score help below)
1 MVSKRSRLDFEDKETLAEDASKIMKQPLSKLAKKSCGSHEVEENGSVFVR 50
51 LLKASGLTLKTGDNQNQLGVDQIIFQRKLFQALRKHPSYPKVIEEFVNGL 100
101 ESYTEDIDSLRNCLLSCERLQDEEASMGTFYSKSLIKLLLGIDILQPAII 150
151 KMLFEKVPQFLFESESRDGISMPRLIISQLKWLDRIVDSKDLTTQMMQLI 200
201 SVAPVNLQHDFITSLPEILGDSQHANVGKELSELLVQNTSLTVPILDVFS 250
251 SLRLDPNFLSEIRQLVMGKLSSVRLEDLPVIVKFILHSVTDSTSLEVIAE 300
301 LREKLNVQHFTLPSRIQASQSKLKSKGLASSSGNQENSDKDCIVLLFDVI 350
351 KSAIRYEKTISEAWIKAIERIQSAAEHKALDVAMLLIIYGTSTQTKKGVE 400
401 RLLRNKIQSDCIQEQLLDSTFSTHCLVLKDICPSILLLAQTLFHSQDQRI 450
451 ILFGSLLCKYAFKFFDTYCQQEVVGALVTHVCSGNEAEVDAALDVLLELI 500
501 VLNASAMRLNAAFIKGILDYLENMSPQQIRKIFCILSTLAFSQQPGTSNH 550
551 IQDDMHLVIRKQLSSTVFKYKLIGIIGAVTMAGIMAEDRTMPSNSTQRSA 600
601 SVSSEQHTQVTSLLQLVHSCTEHSPWASSLYYDEFANLIQERKLAPKTLE 650
651 WVAQTIFNDFQDAFVVDFCAVPEGDFPFPVKALYGLEECNTQDGIVINLL 700
701 PLFFQEFAKDVSQVTSQESSQKSMSPLCLASHFRLLRLCVARQHNGNLDE 750
751 IDALLDCPLFLPDLEPGEKLESMSAKDRSLMCSLTFLTFNWFREVVNAFC 800
801 QQTSPEMKGKVLSRLKDLVELQEILEKYLAVIPDYVPPFTSVDLDTLDVI 850
851 PRSNSAVAAKSRHKGKTGGKKQKADSSTASCTDTLLTEDTSECDVAPSGK 900
901 SQVDKESTGKEGKTFVSLQNYRAFFRELDIEVFSILHSGLVTKFILDTEM 950
951 HTEATEVVQLGPAELLFLLEDLSQKLENRLTPSFTKRVCFFKNKGSRNIG 1000
1001 FSHLHQRSVQDIVHCVVQLLTPMCNHLENIHNFFQCLGAENLSVNDKARV 1050
1051 TAQEHYTMSSCYQKLLQVFHALLAWKGFTHQSNHRLLRSALEVLASRLKQ 1100
1101 TEEGQPLEELLSQSFSYLQNLQHSIPSFQCGLYLLRLLMALLEKSAVPTQ 1150
1151 KKEKLASLAKQLLCRAWPHGDKEKNPTFNDHLHDLLCIYLEHTDNVLKAI 1200
1201 EEITGVGVPELVNAPKDASSSTFPTLTRHTFVIFFRVMMAELEKTVKGLQ 1250
1251 AGTATDSQQVHEEKLLYWNMAVRDFSILINLMKVFDSYPVLHVCLKYGRR 1300
1301 FVEAFLKQCMPLLDFSFRKHRDDVLSLLQTLQLNTRLLHHLCGHSKIHQD 1350
1351 TRLTKHVPLLKKSLELLVCRVKAMLVLNNCREAFWLGTLKNRDLQGEEII 1400
1401 SQHPSSPENTSEDSEDGMTSYVSRNRAIEDGEDEANDGQDRDSDESDDSS 1450
1451 S 1451
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.