 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q6P9K8 from www.uniprot.org...
The NucPred score for your sequence is 0.89 (see score help below)
1 MGKEQELVQAVKAEDVGTAQRLLQRPRPGKAKLLGSTKKINVNFQDPDGF 50
51 SALHHAALNGNTELISLLLEAQAAVDIKDNKGMRPLHYAAWQGRKEPMKL 100
101 VLKAGSAVNVPSDEGHIPLHLAAQHGHYDVSEMLLQHQSNPCMVDNSGKT 150
151 PLDLACEFGRVGVVQLLLSSNMCAALLEPRPGDTTDPNGTSPLHLAAKNG 200
201 HIDIIRLLLQAGIDINRQTKSGTALHEAALCGKTEVVRLLLDSGINAQVR 250
251 NTYSQTALDIVHQFTTSQASKEIKQLLREASAALQVRATKDYCNNYDLTS 300
301 LNVKAGDIITVLEQHPDGRWKGCIHDNRTGNDRVGYFPSSLGEAIVKRAG 350
351 SRTGSEPSPPQGGGSLGPSAPPEEIWVLRKPFAGGDRSGSLSNVAGGRST 400
401 GGHALHAGSEGVKLLATVLSQKSVSESSPGDSPVKPPEGSSGAARSQPPA 450
451 AHAGQVYGEQPPKKLESASASASEGKSAEAVSQWLATFQLQLYAPNFTSA 500
501 GYDLPTISRMTPEDLTAIGVTKPGHRKKITAEISGLNIPDWLPEHKPANL 550
551 AVWLSMIGLAQYYKVLVDNGYENIDFITDITWEDLQEIGITKLGHQKKLM 600
601 LAVRKLAELQKAEYSKYEGGPLRRKTPQSLEMMAIESPPPSEPAAAECQS 650
651 PKMTTFQDSELSGELQAALSGPAEAGAAAVEKSSNHLPPTPRTTSRESSL 700
701 SGRARHISSSQELLGDGPPGPGSPMSRSQEYLLDEGMAPGTPPKEVRSSR 750
751 HGHSVKRASVPPVPGKPRQVLPSGASHFTPPQTPTKAQPGSPQALGGPHG 800
801 PATAKVKPTPQLLPPTDRPMSPRSLPQSPTHRGFAYVLPQPVEGEVGPPA 850
851 PGPAPPPVPAAVPTLCLPPETDVEPGRPKKRAHSLNRYAASDSEPERDEL 900
901 LVPAAAGPYATVQRRVGRSHSVRAPAGTDKNVNRSQSFAVRPRKKGPPPP 950
951 PPKRSSSAMASANLADEPAPDVEAEDGRLGVRAQRRRASDLAGSVDTGSA 1000
1001 GSVKSIAAMLELSSIGGGGRAIRRPPEGHPTPRPASPEPGRVATVLASVK 1050
1051 HKEAIGPDGEVVNRRRTLSGPVTGLLATARRGSGEPAEQSHFMEDGTARQ 1100
1101 RLRGPAKGEASAEGPPLARVEASATLKRRIRAKQSQQENVKFILTESDTV 1150
1151 KRRPKAKEPDTGPEPPPPLSVYQNGTATVRRRPTSEQAGPPELPPPPPPA 1200
1201 EPPPADLMQLPPLPLPDGNARKPVKPPVSPKPILSQPVSKIQGSPTPASK 1250
1251 KVPLPGPGSPEVKRAHGTPPPVSPKPPPPPTAPKPAKALAGLQSSSATPS 1300
1301 PVPSPARQPPAALIKPASSPPSQSASPVKPPSPGTPALHVPAKPPRAAAS 1350
1351 VVSGPPVASDCASPGDSARQKLEETSACLAAALQAVEEKIRQEDGQGPRP 1400
1401 SSIEEKSTGSILEDIGSMFDDLADQLDAMLE 1431
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.