SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q6PQD5 from www.uniprot.org...

The NucPred score for your sequence is 0.97 (see score help below)

   1  MSLALNDLLICCRQLEHDRATERRKAVENFRHLIQDPETVQHLDQHSDSK    50
51 QGKYLNWDAAFRFLQKYIQKETECLRTAKQNVSASTQATRQKKMQEISSL 100
101 VKYFIKCANKRAPRLKCQELLNYIMDTVRDSSNNPIYGADYSNILLKDIL 150
151 SVRKYWCEISQQQWRELFLIYFTLYLKPSQDINRLLVARIIQAVTKGCCS 200
201 QTDGLNSEFLDFFTKAIQNARQEKSSPGLNHILAAYVIFLKTLAANFRIR 250
251 VCELGDKILPTLLYIWTQHRLNDSLKEVIVELFQLQVYMHHPKGAKTQEK 300
301 GAYESAKWKSILYNLYDLLVNEISRIGSRGKYSSGSRNIAVKENLIELMA 350
351 DICHQVFNEDTRSLEISQSYTTTQREFSDYNAPCKKRKIELGWGVIKDHL 400
401 QKSQNDFDVVPWLQIATQLISKYPASLPNCELSPLLMILYQLLPQQRRGE 450
451 RTPYVLRCLMEVALCQGKKPNLESSHKSDLLKIWIKIWSITFRGISSEQI 500
501 QAENFGLLGAIIQGSLVEVDREFWKLFTGSACKPSCPTVCCLTLALKTCV 550
551 VPETVETGMENICDGNRKFSLKESIMKWLLFCQLEDDFEDRIELPPILHS 600
601 NFPHLALEKILVSLIMKNCKAAMNFFQSVPECEQHQKDTEEPSLLEVEEL 650
651 FLQTTFDKMDFLTVVQECTIEKHQSSVGFSFHQNLKESLDRYLLGLSEQL 700
701 LNNYLPETSDSETLVRCSSLLVGVLGCYCYVGVIAEEEAYTSELFQKAKS 750
751 LMQCAGESITLFKSKTNEESRIISLRNMMHLCTNCLYKCAKRSPNKIASG 800
801 FFLRLLTSKLMHDIADVCRSLAFIIKKPFDCREVESMEDDTDKNLMEMND 850
851 QSSMSLFNDNPASSVIDANESGESQITMGAMNPLAEEHLSKQDLLVLDML 900
901 RFLCMCITIAQSNTMSFRAADIRRKLLMLIDSDRLDPTKSLHLHMYLVLL 950
951 KELPGEEYPLPMEDVVELLKPLSSVCSLYRRDQDVCKTILNHVLHIVPNL 1000
1001 CRENVDAESTRDAQGQFLTVIGAFWHLTKEGKCTFSVRLALVKCLKTLLE 1050
1051 ADPYSRWAILNVMEKDFPVNEVFPQFLADNHHQVCMLAAGLINRLFQHMK 1100
1101 QGDSSTIMRALPLKLQQTAFENAYLKAQERIRQVKSQGGENRELLDEICN 1150
1151 RKAVLLTMIAVVLCCSPVCEKQALFALCKSVKENGLEPHLIKKVLEKVSE 1200
1201 TFGYRHLEDFMASHLDYLVLEWLHLQDAEYSLSSFPFILLNYTNIEDFYR 1250
1251 SCYKVLIPHLVMRCHFDEVKSIANQIQGDWKSLLTDCFPKILVNILPYFA 1300
1301 YEDTGDRGMAQQRETASKVYDMLKDENLLGKQIDQLFINNLPEIVVELLM 1350
1351 TLHEPATSDASQSTDPCDFSGDLDPRPNPPHFPSHVIKATFAYISNCHKT 1400
1401 KLKSILEVLSKSPDSYQKILLAICEQAAETNNVYKKHRILKIYHLFVSLL 1450
1451 LKDMKSGLGGAWAFVLRDVIYTLIHYINKRPSRFMDVSLRSFSLCCDLLS 1500
1501 RVCHTAVTYSKDALESHLHVIVGTLIPLVDGQMEVQKQVLDLLKYLVIDN 1550
1551 KDNENLYVMIKLLDPFPDNAVFKDLRITQQEIKYSKGPFSLLEEINHFLS 1600
1601 VSVYDALPLTRLEGLKDLRRQLAQHKDQMMDLMRASQDNPQDGIVVKLVV 1650
1651 SLLQLSKMAVNHTGEREVLEAVGRCLGEVGPIDFSTIAIQHSKDMPYTKA 1700
1701 LELFEDKEHHWTLMMLTYLNSTLVEDCVKVRSAAVTCLKSILATKTGHGF 1750
1751 WEIFKTTADPMLTYLLPFRTSRKKFLEVPRLNKESPLEGLDDISLWIPQS 1800
1801 ENHDIWIKTLTCALLDSGGINSEVLQLLKPMCEVKTDFCQTVLPYLIHDI 1850
1851 LLQDTNESWRSLLSTHIQGFFTNCFRHSSQTSRSTTPANMDSESEHVFRC 1900
1901 HLDKKSQRTMLAVVDYMRRQKRSSSGTVFDDAFWLELNYLEVAKVAQSCA 1950
1951 AHFTALLYAEIYADKKNMDDQEKRSPTFEEGSQSTTISSLSEKSKEETGI 2000
2001 SLQDLLLEIYRSIGEPDSLYGCGGGKMLQPLTRLRTYEHEAMWGKALVTY 2050
2051 DLETAISSSTRQAGIIQALQNLGLCHILSVYLKGLDHENKEQCAELQELH 2100
2101 YQVAWRNMQWDSCVSVNKGMEGTSYHESLYNALQSLRDREFSTFYESLKY 2150
2151 ARVKEVEELCKGSLESVYSLYPTLSRLQAIGELENIGELFSRSVTDRQPS 2200
2201 EVYNKWWKHSQLLKDSDFSFQEPIMALRTVILEILMEKEMENSQRECLKD 2250
2251 ILTKHLVELSLLARTFQNTQLPERAIFQIKQYNSANCGVSEWQLEEAQVF 2300
2301 WAKKEQSLALSILKQMIKKLDASCTENDPRLKLIHIECLRVCGTWLAETC 2350
2351 LENPAVIMQTYLEKAVELAGNYDGESNDELRNGKMKAFLSLARFSDTQYQ 2400
2401 RIENYMKSSEFENKQALLKRAKEEVGLLREHKIQTNRYTIKVQRELELDE 2450
2451 GALRALKKDRKRFLCKAVENYINCLLSGEGHDMWIFRLCSLWLENSGVSE 2500
2501 VNGMMKRDGMKIPSYKFLPLMYQLAARMGTKMMGGLGFHDVLNSLISRIS 2550
2551 VDHPHHTLFIILALANANKDEFLTKPEAARSSRITKNTPKESSQLDEDRT 2600
2601 EAANKVICTLRNRRRQMVRSVEALCDAYIILANLDATQWRTQRKGIRIPA 2650
2651 DQPITKLKNLEDVVVPTMEIKVDPTGEYGNMVTIQSFKPEFRLAGGLNLP 2700
2701 KIIDCVGSDGKERRQLVKGRDDLRQDAVMQQVFQMCNTLLQRNTETRKRK 2750
2751 LTICTYKVVPLSQRSGVLEWCTGTVPIGEYLVNNDTGAHKRYRPKDFSPV 2800
2801 QCQKKMMEAQNKSFEEKYEIFMNICQNFQPVFRYFCMEKFLDPAVWFERR 2850
2851 LAYTQSVATSSIVGYILGLGDRHVQNILINEQSAELVHIDLGVAFEQGKI 2900
2901 LPTPETVPFRLTRDIVDGMGITGVEGVFRRCCEKTMEVMRNSQETLLTIV 2950
2951 EVLLYDPLFDWTMNPLKALYLQQRPEDESELHSTPRADDQECKRNLSDTD 3000
3001 QSFNKVAERVLMRLQEKLKGVEEGTVLSVGGQVNFLIQQAMDPKNLSKLF 3050
3051 SGWKAWV 3057

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.