| Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q6RHR9 from www.uniprot.org...
The NucPred score for your sequence is 0.96 (see score help below)
1 MSKVIQKKNHWTGRVHECTVKRGPQGELGVTVLGGAEHGEFPYVGAVAAA 50
51 EAAGLPGGGEGPKLAEGELLLEVQGVRVSGLPRYDVLGVIDSCKEAVTFK 100
101 AVRQGGRLNKDLRHFLNQRFQKGSPDHELQQTIRDNLYRHAVPCTTRSPR 150
151 EGEVPGVDYSFLTVKEFLDLEQSGTLLEVGTYEGNYYGTPKPPSQPVSGK 200
201 VITTDALHSLQSGSKQSTPKRTKSYNDMQNAGIVHPENEEEEDVPEMNSS 250
251 FTADSGDQDEHTLQEATLPPVNSSILAAPITDPSQKFPQYLPLSAEDNLG 300
301 PLPENWEMAYTENGEVYFIDHNTKTTSWLDPRCLNKQQKPLEECEDDEGV 350
351 HTEELDSELELPAGWEKIEDPVYGVYYVDHINRKTQYENPVLEAKRKKQL 400
401 EQQQQQQQPQPPQPEEWTEDHASVVPPVAPSHPPSNPEPARETPLQGKPF 450
451 FTRNPSELKGKFIHTKLRKSSRGFGFTVVGGDEPDEFLQIKSLVLDGPAA 500
501 LDGKMETGDVIVSVNDTCVLGHTHAQVVKIFQSIPIGASVDLELCRGYPL 550
551 PFDPDDPNTSLVTSVAILDKEPIIVNGQETYDSPASHSSKTGKVSSMKDA 600
601 RPSSPADVASNSSHGYPNDTVSLASSIATQPELITVHIVKGPMGFGFTIA 650
651 DSPGGGGQRVKQIVDSPRCRGLKEGDLIVEVNKKNVQALTHNQVVDMLIE 700
701 CPKGSEVTLLVQRGGLPVPKKSPKSQPLERKDSQNSSQHSVSSHRSLHTA 750
751 SPSHGIQVLPEYLPADAPAPDQTDSSGQKKPDPFKIWAQSRSMYENRPMS 800
801 PSPASGLSKGERDREINSTNFGECQIPDYQEQDIFLWRKETGFGFRILGG 850
851 NEPGEPIYIGHIVPLGAADTDGRLRSGDELICVDGTPVIGKSHQLVVQLM 900
901 QQAAKQGHVNLTVRRKVVFAVPKAENEVPSPASSHHSSNQPASLTEEKRT 950
951 PQGSQNSLNTVSSGSGSTSGIGSGGGGGSGVVSAVLQPYDVEIRRGENEG 1000
1001 FGFVIVSSVSRPEAGTTFGRIIEGSPADRCGKLKVGDRILAVNGCSITNK 1050
1051 SHSDIVNLIKEAGNTVTLRIIPGDESSNATLLTNAEKIATITTTHAPSQQ 1100
1101 GTQETRTTTKPKQDSQFEFKGPQAAQEQDFYTVELERGAKGFGFSLRGGR 1150
1151 EYNMDLYVLRLAEDGPAERCGKMRIGDEILEINGETTKNMKHSRAIELIK 1200
1201 NGGRRVRLFLRRGDGSVPEYDPSSDRNGPSTGAQGVPEVRPGPPDHRPHP 1250
1251 ALESSYPPELHKSSQHAEKRAHAKDPKGNREHSKQPNEHHTWNGTSRKQD 1300
1301 SGACRPKDRPPDAWREAQPERTATNGSKRRSPEKRREGTRSADNTLERRE 1350
1351 KHEKRREISPERKRERSPTRRKDSSPSRRRRSLERLLDQRRSPERRRGGS 1400
1401 PERRAKSTDRRRARSPERRRERSLDKRNRDDKVGHREREEAGLKLEAGRS 1450
1451 PRNPPEQRRRPYKECSTDLSI 1471
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.