SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q6V3W0 from www.uniprot.org...

The NucPred score for your sequence is 0.87 (see score help below)

   1  MSADIVKQLKGTRSDVKAAATTIELKFKEFSKGIGINDASFPLRYELSVL    50
51 RQLCLALKDNLHQHADLYCGIAATMLPHVEPYEEKPSLWEAHLTSLRYIH 100
101 HGLCQEKSLTECQKMYGLIRSQPCRLQEEADYKFYLDIHLTHFNGIYLQM 150
151 QKETLPLAATDELYYALEAMGVLFDTMHQRKVAKNAALLVQLNDSLFSKR 200
201 SKAFLKYLSALPPESTTKMYDPLLKLLSCSWATPSSELTNQFTEYLGLVL 250
251 ALVQIDMFSIEAPLEQQLALKLLRICRDLYKDVSPQNYSIQLLYYYVKLM 300
301 YVREATADFKQTYIDLCKKFVYFFEHKGATHAKEQWFMDLLVFFQRLQTL 350
351 LHQSSNKPPLDIFWQQLEGDDSSEVYTAHFQLLHGCLGLAVNVVRSPLGT 400
401 SCSNEACKSIRRHCLLYFGMCALEAYINWQPTTEQKADKAPYKPLLGILG 450
451 YTLDVAKSMKCLGPSAMELVKLVRLLALVAEKVSCPEQMSLVLAFLEPLQ 500
501 HLRPLIASQDMLSVLRRIYKASVHCKSSDMANRLQSTYLAALTNPSRLRS 550
551 QLFAHYHNANNTEKCVYEWHESSPMPNPLTPAQTKQLYDVDLLAVLHFLS 600
601 APPVPLLQSLLRCRHNDYHLALLARKMRTDSEVVRQCEELRSQLHSTALK 650
651 QPLSRMQQLAIGHTSISVLLEALEAQKTKFSIKETAENCLEELIVKNNLL 700
701 ELNIKREHRLVELATSAIAGFAAFFERADTEPLGCDDTPIDWEALIDDAV 750
751 AAAMALSTMGYMAQADEAWLLILRIGQMLDERFTYLRALTHFLGQDHLNS 800
801 NQQLQLSEEVDRAQELLDDLWPQLQNGWFFKRQHTIVMLCLCHMASYYAR 850
851 QDCLCHAQLLLLQAEELRAQFDERVGKSDIVQITIQTVRFRLEYLRNKRC 900
901 SSLPRRPTPLRQLDTLVDSVRNYCTVSSVDLGALQLLLADLVRESTECAA 950
951 NRLTERFAFYGTMLNLVLQSGMALRTIEVLISWLWMNLQMEYLDQAQSKL 1000
1001 RLLDHLLAIKPLSRTLVEQTSATYVPAIAAKEDLKANAMSELTSNMLLMQ 1050
1051 LVEPIRKQNQMDVATIKSLPMHEPIPTSHQLQRYVSKQGTPPHLRDSMQL 1100
1101 QCIYFIVGCLHARFSFLKRENDQLDDFYVGAGNWLQEDPVRTATLGSMLL 1150
1151 VHELYHLNYLRFRKKHKEALSYAEAGLKSVYQTADINYSFNFMVQLKTAR 1200
1201 LELHPVGKARAKTIRRALAFNTSPEDKRRKGVVEGSIKAKSSARKTPRFK 1250
1251 IYTELELRPPIGCSNSSSSSSKSGNENTPPSDHVDLNACQAIEISDDDAA 1300
1301 SVSASTPAPSQLKRSQSVPAKATKTRSARVGSQLKVPEIIELDDTMEETP 1350
1351 STSTAATVKRYPTTDARSSRARNRQLEETPATTRGRPRRKVPEPAPQQET 1400
1401 VSLRPRQRN 1409

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.