| Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q6ZV73 from www.uniprot.org...
The NucPred score for your sequence is 0.98 (see score help below)
1 MTSAAEIKKPPVAPKPKFVVANNKPAPPPIAPKPDIVISSVPQSTKKMKP 50
51 AIAPKPKVLKTSPVREIGQSPSRKIMLNLEGHKQELAESTDNFNCKYEGN 100
101 QSNDYISPMCSCSSECIHKLGHRENLCVKQLVLEPLEMNENLENSKIDET 150
151 LTIKTRSKCDLYGEKAKNQGGVVLKASVLEEELKDALIHQMPPFISAQKH 200
201 RPTDSPEMNGGCNSNGQFRIEFADLSPSPSSFEKVPDHHSCHLQLPSDEC 250
251 EHFETCQDDSEKSNNCFQSSELEALENGKRSTLISSDGVSKKSEVKDLGP 300
301 LEIHLVPYTPKFPTPKPRKTRTARLLRQKCVDTPSESTEEPGNSDSSSSC 350
351 LTENSLKINKISVLHQNVLCKQEQVDKMKLGNKSELNMESNSDAQDLVNS 400
401 QKAMCNETTSFEKMAPSFDKDSNLSSDSTTVDGSSMSLAVDEGTGFIRCT 450
451 VSMSLPKQLKLTCNEHLQSGRNLGVSAPQMQKESVIKEENSLRIVPKKPQ 500
501 RHSLPATGVLKKAASEELLEKSSYPSSEEKSSEKSLERNHLQHLCAQNRG 550
551 VSSSFDMPKRASEKPVWKLPHPILPFSGNPEFLKSVTVSSNSEPSTALTK 600
601 PRAKSLSAMDVEKCTKPCKDSTKKNSFKKLLSMKLSICFMKSDFQKFWSK 650
651 SSQLGDTTTGHLSSGEQKGIESDWQGLLVGEEKRSKPIKAYSTENYSLES 700
701 QKKRKKSRGQTSAANGLRAESLDDQMLSRESSSQAPYKSVTSLCAPEYEN 750
751 IRHYEEIPEYENLPFIMAIRKTQELEWQNSSSMEDADANVYEVEEPYEAP 800
801 DGQLQLGPRHQHSSSGASQEEQNDLGLGDLPSDEEEIINSSDEDDVSSES 850
851 SKGEPDPLEDKQDEDNGMKSKVHHIAKEIMSSEKVFVDVLKLLHIDFRDA 900
901 VAHASRQLGKPVIEDRILNQILYYLPQLYELNRDLLKELEERMLHWTEQQ 950
951 RIADIFVKKGPYLKMYSTYIKEFDKNIALLDEQCKKNPGFAAVVREFEMS 1000
1001 PRCANLALKHYLLKPVQRIPQYRLLLTDYLKNLIEDAGDYRDTQDALAVV 1050
1051 IEVANHANDTMKQGDNFQKLMQIQYSLNGHHEIVQPGRVFLKEGILMKLS 1100
1101 RKVMQPRMFFLFNDALLYTTPVQSGMYKLNNMLSLAGMKVRKPTQEAYQN 1150
1151 ELKIESVERSFILSASSATERDEWLEAISRAIEEYAKKRITFCPSRSLDE 1200
1201 ADSENKEEVSPLGSKAPIWIPDTRATMCMICTSEFTLTWRRHHCRACGKI 1250
1251 VCQACSSNKYGLDYLKNQPARVCEHCFQELQKLDHQHSPRIGSPGNHKSP 1300
1301 SSALSSVLHSIPSGRKQKKIPAALKEVSANTEDSSMSGYLYRSKGNKKPW 1350
1351 KHFWFVIKNKVLYTYAASEDVAALESQPLLGFTVIQVKDENSESKVFQLL 1400
1401 HKNMLFYVFKAEDAHSAQKWIEAFQEGTIL 1430
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.