SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q7M6U3 from www.uniprot.org...

The NucPred score for your sequence is 0.97 (see score help below)

   1  MSRGAPFPVPCPVLLGTFTDDSLEAQLHEYAKQGNCVKLKKILKKGVCVD    50
51 AVNTQGQSALFVAALLGHVKLVDVLVDYGSDPNHRCFDGSTPVHAAAFSG 100
101 NQWILSKLLTAGGDLRLHDEKGRNPQAWALTAGKDRSTQMVEFMQRCTSH 150
151 MKAIIQGFSYDLLKKIDSPQRLIGSPPWFGSLIQGSPNSSPNRQLKPGII 200
201 SAQNIYSFGFGKFYLTSGMQLTYPGSLPVIGEKEVVQADDEPTFSFFSGP 250
251 YMVMTNLVWNRSRVTVKELNLPTRPHCSRLRLADLLIAEQEHSSNLRHPN 300
301 LLQLMAVCLSRDLEKIRLVYERITVGTLFSVLHERRSQFPVLHMEVIVHL 350
351 LLQVADALIYLHSRGFIHRSLSSYAVHIVSAGEARLTNLEYLTESQDSGA 400
401 HRNVTRMPLPTQLYNWAAPEVVLQKAATVKSDIYSFSVIIQEILTDSIPW 450
451 NGLDGSLVKETIALGNYLEADVRLPEPYYDIVKSGIHAKQKNRTMNLQDI 500
501 RYILKNDLKEFIGAQKTQPTESPRGQSYEPHPDVNICLGLTSEYQKDPPD 550
551 LDIKELKEMGSQPHSPTDHSFLTVKPTLAPQTLDSSLSAQKPDNANVPSP 600
601 PAACLAEEVRSPTASQDSLCSFEINEIYSGCLTLGTDKEEECLGTAASPE 650
651 GDRPNQGDELPSLEEELDKMERELHCFCEEDKSISEVDTDLLFEDDDWQS 700
701 DSLGSLNLPEPTREAKGKTSSWSKTDEYVSKCVLNLKISQVMMQQSAEWL 750
751 RKLEQEVEELEWAQKELDSQCSSLRDASLKFANAKFQPAVGPPSLAYLPP 800
801 VMQLPGLKQPENGGTWLTLARSPGNEREFQEGHFSKKPEKLSACGWKPFT 850
851 QVSEESRGDCSELNNQLPTLRGPGKQSTGEQLPSTQEARESLEKNTNQNS 900
901 RSMASVSSEIYATKSRNNEDNGEAHLKWRLAVKEMAEKAVSGQLLLPPWN 950
951 PQSSAPFESKVENESTPLPRPPIRGPESTEWQHILEYQRENDEPKGNTKF 1000
1001 GKMDNSDCDKNKHSRWTGLQRFTGIRYPFFRNHEQPEQNEASQASCDTSV 1050
1051 GTEKFYSTSSPIGDDFERFQDSFAQRQGYVEENFQIREIFEKNAEILTKP 1100
1101 QFQAIQCAEDKQDETLGETPKELKEKNTSLTDIQDLSSITYDQDGYFKET 1150
1151 SYKTPKLKHAPTSASTPLSPESISSAASHYEDCLENTTFHVKRGSTFCWN 1200
1201 GQEAMRTLSAKFTTVRERAKSLESLLASSKSLPAKLTDSKRLCMLSETGS 1250
1251 SNVSAAFVTSTHATKRKSLPRELAEATSQQHLDELPPPAQELLDEIEQLK 1300
1301 QQQVSSLASHENTARDLSVTNKDKKHLEEQETNSSKDSSFLSSREIQDLE 1350
1351 DTERAHSSLDEDLERFLQSPEENTALLDPTKGSTREKKNKDQDVVEQKRK 1400
1401 KKESIKPERRESDSSLGTLEEDELKPCFWKRLGWSEPSRIIVLDQSDLSD 1450

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.