| Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q7PCJ6 from www.uniprot.org...
The NucPred score for your sequence is 0.98 (see score help below)
1 MNIFFQRKLVKYFGNIKKKKHYLTVSEECNHYVFVKKTYVSSVFLKSLNK 50
51 VNKTCNTNSGILYNQYSLGYINMHKQLPSLIRNKSKTIGNYGVAHPSRLV 100
101 KCLVTKNATAPFFNFTFDKGRLKNLVSWTLENYGQYKTVELLEQLKKTGF 150
151 EYATKAGISLGLDDLKIPPKKKILLLEAEQLTKLTIHQYQRGDITAVERF 200
201 QRLIDTWHRTSEQLKQEVINYFEETDILNPVYMMAFSGARGNISQVRQLV 250
251 GMRGLMSDPQGQIIDFPIQSNFREGLTLTEYIISSYGARKGIVDTALRTA 300
301 NAGYLTRRLVDVAQHVIISHYDCGTHKGIFLTDMKEGNKTIVSAQSRIIG 350
351 RVLARDIYKPNSTITIAKRNQEISTDVAFEIGKVTNRIFVRSALTCNTTK 400
401 LLCQLCYGWSLAQGNLVSVGEAVGVIAAQSIGEPGTQLTMRTFHTGGVFS 450
451 GDVSDEIRAPYNGFVYYDNKIPGILIRTLDGKILFLTKSEGTLIFTADPN 500
501 FNKPQALTDSFLNSGHGEKEKYEIKKYKIPAYTLLFIRNGESVLQKQVLA 550
551 QITMISTKPNMRDTAELVIKAELEGLFYAKNLQVQKKILGPKPKFIGEGK 600
601 QNVLLDPKAMEIIVKARGWNFAWVLSGKRYEFPLLLKSFASSGDLITPNT 650
651 IMAKHNLQLSSPFLNVGTALQVGNSTDIPKLPLLGATSKFRAMSGVLTSS 700
701 IVRRYPTKINSSSRPKVNQFGKSNLFYTQVLQNKVNALNGEVDSYSETAK 750
751 LPYWKNLNLKFVQKLNLSKFFKQYNLKNKTKTKLAFYSLVQANALQASKL 800
801 DSFKANTFQSKQLGRPIFIYRHCLLTKESNKKTVKLIHNIQLQQSVLFLK 850
851 IKKIKFYKMGYFQLVNSNKTAFLVSLSHNKNRLTLYHNKFNYNNSYNDII 900
901 VLPTSLTQDISSKKQIALKRFKPAYNLFQWFYPSLIKPSSKEAQNLTVQQ 950
951 VEFFNAREQMHFNSRYSKTDFVQLLQNPFKLDFNKALHRPLCISESYKEI 1000
1001 PTGEVSISPQNSVNLPMNTFFNTDGVPDKKPNYTNMYAFWLKQQVLKSYK 1050
1051 KRYKKYKLTSILKSHLSDKIYLPASVELQHQSQQNNLLSLTKEFKALNSS 1100
1101 KYLKNNQLQSRPLLYKQEKLLKTLVLKKWFKSNLLYVNSAISKEENMDGS 1150
1151 STQMSAHSLPKRQRKGAKVSKINRFLKIDNYIKQLTYFKTSKIMRIKHSF 1200
1201 NSLRVDFKFTSSKLVCPKRKRNLQIVCTLRGEEQTSVRESSVTHVNNLIC 1250
1251 SSKYKRSIRLQNDSHLFTTTKKAKVPFTGYSDSHQAGKVLQSSQISSTKP 1300
1301 KTQSSFTFFEYFKLKLAQSGTKAILKHFKSLKAVNISKVSMDQSRNKGFN 1350
1351 NWGKSSSECLNTSLGDKQALYFKTKTEANLQLLTLVLENFYRKKQFANLL 1400
1401 AKNLTILNKNLKLKKNHVHFLLYYYNKLSVQKPNAIFLLTHMLAKANKIQ 1450
1451 ISYSYVVPTSPKSKLNLDRGNLTTTNQKNVASLGGYQPRSAGTKYYSEGI 1500
1501 RNRTRKNNKSSMTKITKIFNQLKLDTQFVIILLSPHKLLHHSHQLPQNTL 1550
1551 GIYDKFNSNFEMAKVTLLTHPLWFNQFQMKSIKEVGNKFINTRNNSLLEN 1600
1601 YVILLLSNNYVFNFLSIKSEQINLPEEQESNLSLQEYKSPANCQEKALPS 1650
1651 DNKKIIFDLKKLQHIVLTEQYKNNLRWVKNKKPRFLPKDIDINTLEVNLD 1700
1701 RIKPKNKLSNLNPTQQLQLSNSLLEFVKTIKINPTDLAKVYSGSANTVMS 1750
1751 IENCQPSLEVSNTFFLKTQKLLKLINKTKHSIALNQTKFINTSLLKGHLV 1800
1801 AYARPVFIITNKAEPFIAKQKKDLLLLPKNATINVLIKPQQEKNSLNKAI 1850
1851 FPLGGNAANNHSIFVSPNTNKLANPNVSYLKKHIYFNQMPFFDSPFRNAS 1900
1901 YLFSYTENSIKPLTKVDFMHSFAQKNHKLLPESEREKRLQFKALHIPKQP 1950
1951 CLNICFKSNSNLIFNSKTTNSLVIRKTTTNYKYNIDLSEGVDFKKLKTNM 2000
2001 FSARKCNNFKLDTALESKLFKGRPTLLNYKNVVTQTNYFSPFEGELLATK 2050
2051 TYKNYLDLNPYQSLKVGLMQLNTSSALATLVPKTKRAGNKSSKQKIKLNQ 2100
2101 GELSTELGSTIPQSGKHKTKTEKMRMAMFKYYLKTINSQKIIGNKGWSRF 2150
2151 NLILTKKDFITLKYNNTLYPNFTIFSEIQKHWQPRIQMTKPIRPISYDEV 2200
2201 CLNYLFSEEITNQVKLQTLAKLNKEIHFNKSYHFNLKNRWLKQKLVINAS 2250
2251 TSKSTSSLLTNIHMDQGEDKKTSVGVSLKLPAIYLCEEEGLHTNLFIHKA 2300
2301 QRLLYKIKIILSEKALNVEHYSWNKNSSLQKTFGYQNGIIQAKSLLHTLP 2350
2351 TNLNYNLKWINYKQKNIFTTNKVGFFFLKGNTFFNTSQKLFNKKITKQTT 2400
2401 FLNATIYNFGRNNKNNLISYNNSNFLENTHFVDLSLCLELQKIYLNKNYL 2450
2451 NLKPILDKTIHCQKPTKVLFKKSGFSKKQHYYLEFLNTKNHRRLIGLKEF 2500
2501 NDYHMSYSKSQTKEMSNFIDSYYFVKPINMDCAHYIKHELVLYNDLITHF 2550
2551 ASLNLYISREHGLKSLSAFFINILKIFITSNQSQISLAPIGIDKYTNIYI 2600
2601 PEGEGEKDMTKNVFQVIKKSGQLIQMNKEKMTLRLGQPLVISPRSTIHAT 2650
2651 HGDFIRYKTPVVTLTYQQLKTGDIVQGIPKIEQLFEARTTKRGRLFRDNV 2700
2701 TNLLTGLFLKYFIKSTYLLRKTMIGFSKKRWKKSIKYTLPVNKQPNMPRV 2750
2751 NHTLNTTVGTELGRQSKTKVDKNKHSIAINKNLNYSNFINNKQNQTIILA 2800
2801 LALQWAVKQSFYKIQQIIVDGILRVYRSQGVSIADKHVEIVVKQMTSKVR 2850
2851 IINSNASKMSEYMFSLDTIKAGEMPETDLPEEEVSLQQNKAVSKQNVVAQ 2900
2901 TGKKRKKRLRKSKLSERDVITTKRTEGIDSSKIPSSNIPEGKVTQNNKRK 2950
2951 STRKNVSLADRELKTRNTLSNTTKPIQISQVFEHKVLNQLLSNNLDGPTG 3000
3001 LFPGEIVDIDFVENINTFLLKTASVDRASRETLSTDPLNPNNQVAFAIEP 3050
3051 IKYEPIVLGITRASLEVESFLSAASFQQTTRVLSQAALYKKKDFLKGLKE 3100
3101 NIIIGNLIPAGTGFLSSLNI 3120
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.