SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q7TMY8 from www.uniprot.org...

The NucPred score for your sequence is 0.99 (see score help below)

   1  MKVDRTKLKKTPTEAPADCRALIDKLKVCNDEQLLLELQQIKTWNIGKCE    50
51 LYHWVDLLDRFDGILADAGQTVENMSWMLVCDRPEKEQLKMLLLAVLNFT 100
101 ALLIEYSFSRHLYSSIEHLTTLLASSDMQVVLAVLNLLYVFSKRSNYITR 150
151 LGSDKRTPLLTRLQHLAESWGGKENGFGLAECCRDLQMLKYPPSATTLHF 200
201 EFYADPGAEVKIEKRTTSNTLHYIHIEQLDKISESPSEIMESLTKMYSIP 250
251 KDKQMLLFTHIRLAHGFSNHRKRLQAVQARLHAISILVYSNALQESANSI 300
301 LYNGLIEELVDVLQITDKQLMEIKAASLRTLTSIVHLERTPKLSSIIDCT 350
351 GTASYHGFLPVLVRNCIQAMIDPSMDPYPHQFATALFSFLYHLASYDAGG 400
401 EALVSCGMMEALLKVIKFLGDEQDQITFVTRAVRVVDLITNLDMAAFQSH 450
451 SGLSIFIYRLEHEVDLCRKECPFVIKPKIQRPSTTQEGEEMETDMDGVQC 500
501 IPQRAALLKSMLNFLKKAIQDPAFSDGIRHVMDGSLPTSLKHIISNAEYY 550
551 GPSLFLLATEVVTVFVFQEPSLLSSLQDNGLTDVMLHALLIKDVPATREV 600
601 LGSLPNVFSALCLNARGLQSFVQCQPFERLFKVLLSPDYLPAMRRRRSSD 650
651 PLGDTASNLGSAVDELMRHQPTLKTDATTAIIKLLEEICNLGRDPKYICQ 700
701 KPSIQKADGTATAPPPRSNHAAEEASSEDEEEEEVQAMQSFNSAQQNETE 750
751 PNQQVVGTEERIPIPLMDYILNVMKFVESILSNNTTDDHCQEFVNQKGLL 800
801 PLVTILGLPNLPIDFPTSAACQAVAGVCKSILTLSHEPKVLQEGLLQLDL 850
851 ILSSLEPLHRPIESPGGSVLLRELACAGNVADATLSAQATPLLHALTAAH 900
901 AYIMMFVHTCRVGQSEIRSISVNQWGSQLGLSVLSKLSQLYCSLVWESTV 950
951 LLSLCTPNSLPSGCEFGQADMQKLVPKDEKAGTTQGGKRSDGEQDGTAGS 1000
1001 MDASAQGLLEGIELDGDTLAPMETDEPSSSDSKGKSKITPAMAARIKQIK 1050
1051 PLLSASSRLGRALAELFGLLVKLCVGSPVRQRRSHHAASTTTAPTPAARS 1100
1101 TASALTKLLTKGLSWQPPPYTPTPRFRLTFFICSVGFTSPMLFDERKYPY 1150
1151 HLMLQKFLCSGGHNALFETFNWALSMGGKVPVSEGLEHSDLPDGTGEFLD 1200
1201 AWLMLVEKMVNPTTVLESPHSLPAKLPGGVQSFPQFSALRFLVVTQKAAF 1250
1251 TCIKNLWNRKPLKVYGGRMAESMLAILCHILRGEPVIRERLSKEKEGSRG 1300
1301 EEEAGQEEGGSRREPQVNQQQLQQLMDMGFTREHAMEALLNTSTMEQATE 1350
1351 YLLTHPPPIIGGVVRDLSMSEEDQMMRAIAMSLGQDIPMDQRAESPEEVA 1400
1401 CRKEEEERKAREKQEEEEAKCLEKFQDADPLEQDELHTFTDTMLPGCFHL 1450
1451 LDELPDTVYRVCDLIMTAIKRNGADYRDMILKQVVNQVWEAADVLIKAAL 1500
1501 PLTTSDTKTVSEWISQMATLPQASNLATRILLLTLLFEELKLPCAWVVES 1550
1551 SGILNVLIKLLEVVQPCLQAAKEQKEVQTPKWITPVLLLIDFYEKTAISS 1600
1601 KRRAQMTKYLQSNSNNWRWFDDRSGRWCSYSASNNSTIDSAWKSGETSVR 1650
1651 FTAGRRRYTVQFTTMVQVNEETGNRRPVMLTLLRVPRLSKNSKSSNGQEL 1700
1701 EKTLEESKETDIKHKENKGNDIPLALESTNTEKEASLDETKIGEILIQGL 1750
1751 TEDMVTVLIRACVSMLGVPVDPDTLHATLRLCLRLTRDHKYAMMFAELKS 1800
1801 TRMILNLTQSSGFNGFTPLVTLLLRHIIEDPCTLRHTMEKVVRSAATSGA 1850
1851 GSTTSGVVSGSLGSREINYILRVLGPAACRNPDIFTEVANCCIRIALPAP 1900
1901 RGSGTASDDEFENLRIKGPNAVQLVKTTPLKPSSLPVIPDTIKEVIYDML 1950
1951 NALAAYHAPEEADKSDPKPGGTTQEVGQLLQDMGDDVYQQYRSLTRQSSD 2000
2001 FDTQSGFSLNSQVFAADGAPAETSTTGTSQGEASTPEETREGKKDKEGDR 2050
2051 TSEEGKQKSKGSKPLMPTSTILRLLAELVRSYVGIATLIANYSYTVGQSE 2100
2101 LIKEDCSVLAFVLDHLLPHTQNAEDKDTPALARLFLASLAAAGSGTDAQV 2150
2151 ALVNEVKAALGRALAMAESTEKHARLQAVMCIISTIMESCPSTSSFYSSA 2200
2201 TAKTQHNGMNNIIRLFLKKGLVNDLARVPHSLDLSSPNMANTVNAALKPL 2250
2251 ETLSRIVNQPSSLFGSKSASSKNKSEQDAQGASQDSSSHQQDPGEPGEAE 2300
2301 VQEEDHDVTQTEVADGDIMDGEAETDSVVIAGQPEVLSSQEMQVENELED 2350
2351 LIDELLERDGGSGNSTIIVSRSGEDESQEDVLMDEAPSNLSQASTLQANR 2400
2401 EDSMNILDPEDEEEHTQEEDSSGSNEDEDDSQDEEEEEEEDEEDDQEDDE 2450
2451 GEEGDEDDDDDGSEMELDEDYPDMNASPLVRFERFDREDDLIIEFDNMFS 2500
2501 SATDIPPSPGNIPTTHPLMVRHADHSSLTLGSGSSTTRLTQGIGRSQRTL 2550
2551 RQLTANTGHTIHVHYPGNRQPNPPLILQRLLGPSAAADILQLSSSLPLQS 2600
2601 RGRARLLVGNDDVHIIARSDDELLDDFFHDQSTATSQAGTLSSIPTALTR 2650
2651 WTEECKVLDAESMHDCVSVVKVPIVNHLEFLRDEELEERREKRRKQLAEE 2700
2701 ETKIIDKGKEDKENRDQSAQCTVTKTNDSTEQNVSDGTPMPDSYPTTPSS 2750
2751 TDAPTSESKETLGTLQPSQQQPALPPPPSLGEIPQELQSPAEEVANSTQL 2800
2801 LMPIELEELGPTRPSGEAETTQMELSPAPTITSLSPERAEDSDALTAVSS 2850
2851 QLEGSPMDTSSLASCTLEEAVGDTPAAGSSEQPTAGSSTPGDAPSVVAEV 2900
2901 QGRPDVSRESNQPPEDSSPPASSESSSTRDSAVAISGADSRGILEEPLPS 2950
2951 TSSEEEDPLAGISLPEGVDPSFLAALPDDIRREVLQNQLGIRPPTRSAPS 3000
3001 SNSSAPAVVGNPGVTEVSPEFLAALPPAIQEEVLAQQRAEQQRRELAQNA 3050
3051 SSDTPMDPVTFIQTLPSDLRRSVLEDMEDSVLAVMPPDIAAEAQALRREQ 3100
3101 EARQRQLMHERLFGHSSTSALSAILRSPAFTSRLSGNRGVQYTRLAVQRG 3150
3151 GTFQMGGSSSHNRPSGSNVDTLLRLRGRLLLDHEALSCLLVLLFVDEPKL 3200
3201 NTSRLHRVLRNLCYHAQTRHWVIRSLLSILQRSSESELCIETPKLSTSEE 3250
3251 RGKKSSKSCASSSHENRPLDLLHKMESKSSNQLSWLSVSMDAALGCRTNI 3300
3301 FQIQRSGGRKHTEKHASSGSTVHIHPQAAPVVCRHVLDTLIQLAKVFPSH 3350
3351 FTQQRTKETNCESDRERGSKQACSPCSSQSSSSGICTDFWDLLVKLDNMN 3400
3401 VSRKGKNSVKSVPVSSGGEGETSPHSLEASPLGQLMNMLSHPVIRRSSLL 3450
3451 TEKLLRLLSLISIALPENKVSEVQTNSSNSGSSTAATSNTSTTTTTTTTA 3500
3501 TAPTPTPPAATTPVTSAPALVAATAISTITVAASTTVTTPTTATTTVSTS 3550
3551 TTKGSKSPAKVGEGGSGIDFKMVSSGLTENQLQLSVEVLTSHSCSEEGLE 3600
3601 DAANVLLQLSRGDSGTRDTVLKLLLNGARHLGYTLCKQIGTLLAELREYN 3650
3651 LEQQRRAQCETLSPDGLPEEQPQTTKLKGKMQSRFDMAENVVIVASQKRP 3700
3701 LGGRELQLPSMSMLTSKTSTQKFFLRVLQVIIQLRDDTRRANKKAKQTGR 3750
3751 LGSSGLGSASSIQAAVRQLEAEADAIIQMVREGQRARRQQQAATSESSNQ 3800
3801 SETSVRREESPMDVDQPSPSAQDTQSIVISDGTPQGEKEKEEKPPELPLL 3850
3851 SEQLSLDELWDMLGECLKELEESHDQHAVLVLQPAVEAFFLVHATERESK 3900
3901 PPVRDTRESQLAHIKDEPPPLSPAPLTPATPSSLDPFFSREPSSMHISSS 3950
3951 LPPDTQKFLRFAETHRTVLNQILRQSTTHLADGPFAVLVDYIRVLDFDVK 4000
4001 RKYFRQELERLDEGLRKEDMAVHVRRDHVFEDSYRELHRKSPEEMKNRLY 4050
4051 IVFEGEEGQDAGGLLREWYMIISREMFNPMYALFRTSPGDRVTYTINPSS 4100
4101 HCNPNHLSYFKFVGRIVAKAVYDNRLLECYFTRSFYKHILGKSVRYTDME 4150
4151 SEDYHFYQGLVYLLENDVSTLGYDLTFSTEVQEFGVCEVRDLKPNGANIL 4200
4201 VTEENKKEYVHLVCQMRMTGAIRKQLAAFLEGFYEIIPKRLISIFTEQEL 4250
4251 ELLISGLPTIDIDDLKSNTEYHKYQSNSIQIQWFWRALRSFDQADRAKFL 4300
4301 QFVTGTSKVPLQGFAALEGMNGIQKFQIHRDDRSTDRLPSAHTCFNQLDL 4350
4351 PAYESFEKLRHMLLLAIQECSEGFGLA 4377

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.