SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q7TPD3 from www.uniprot.org...

The NucPred score for your sequence is 0.80 (see score help below)

   1  MNPLMFTLLLLFGFLCIQIDGSRLRQEDFPPRIVEHPSDVIVSKGEPTTL    50
51 NCKAEGRPTPTIEWYKDGERVETDKDDPRSHRMLLPSGSLFFLRIVHGRR 100
101 SKPDEGSYVCVARNYLGEAVSRNASLEVALLRDDFRQNPTDVVVAAGEPA 150
151 ILECQPPRGHPEPTIYWKKDKVRIDDKEERISIRGGKLMISNTRKSDAGM 200
201 YTCVGTNMVGERDSDPAELTVFERPTFLRRPINQVVLEEEAVEFRCQVQG 250
251 DPQPTVRWKKDDADLPRGRYDIKDDYTLRIKKAMSTDEGTYVCIAENRVG 300
301 KVEASATLTVRVRPVAPPQFVVRPRDQIVAQGRTVTFPCETKGNPQPAVF 350
351 WQKEGSQNLLFPNQPQQPNSRCSVSPTGDLTITNIQRSDAGYYICQALTV 400
401 AGSILAKAQLEVTDVLTDRPPPIILQGPINQTLAVDGTALLKCKATGEPL 450
451 PVISWLKEGFTFLGRDPRATIQDQGTLQIKNLRISDTGTYTCVATSSSGE 500
501 TSWSAVLDVTESGATISKNYDMNDLPGPPSKPQVTDVSKNSVTLSWQPGT 550
551 PGVLPASAYIIEAFSQSVSNSWQTVANHVKTTLYTVRGLRPNTIYLFMVR 600
601 AINPQGLSDPSPMSDPVRTQDISPPAQGVDHRQVQKELGDVVVRLHNPVV 650
651 LTPTTVQVTWTVDRQPQFIQGYRVMYRQTSGLQASTVWQNLDAKVPTERS 700
701 AVLVNLKKGVTYEIKVRPYFNEFQGMDSESKTVRTTEEAPSAPPQSVTVL 750
751 TVGSHNSTSISVSWDPPPADHQNGIIQEYKIWCLGNETRFHINKTVDAAI 800
801 RSVVIGGLFPGIQYRVEVAASTSAGVGVKSEPQPIIIGGRNEVVITENNN 850
851 SITEQITDVVKQPAFIAGIGGACWVILMGFSIWLYWRRKKRKGLSNYAVT 900
901 FQRGDGGLMSNGSRPGLLNAGDPNYPWLADSWPATSLPVNNSNSGPNEIG 950
951 NFGRGDVLPPVPGQGDKTATMLSDGAIYSSIDFTTKTTYNSSSQITQATP 1000
1001 YATTQILHSNSIHELAVDLPDPQWKSSVQQKTDLMGFGYSLPDQNKGNNG 1050
1051 GKGGKKKKTKNSSKAQKNNGSTWANVPLPPPPVQPLPGTELGHYAAEQEN 1100
1101 GYDSDSWCPPLPVQTYLHQGMEDELEEDEDRVPTPPVRGVASSPAISFGQ 1150
1151 QSTATLTPSPREEMQPMLQAHLDELTRAYQFDIAKQTWHIQSNTPPPQPP 1200
1201 APPLGYVSGALISDLETDVPDEDADDEEEPLEIPRPLRALDQTPGSSMDN 1250
1251 LDSSVTGKAFSSSQRQRPTSPFSTDSNTSAAQNQSQRPRPTKKHKGGRMD 1300
1301 PQPVLPHRREGMPDDLPPPPDPPPGQGLRQQIGLSQHSGNVENSTERKGS 1350
1351 SLERQQAANLEDTKSSLDCPAKTVLEWQRQTQDWINSTERQEETRKAPHK 1400
1401 QGVGSEESLVPYSKPSFPSPGGHSSSGTSSSKGSTGPRKADVLRGSHQRN 1450
1451 ANDLLDIGYVGSNSQGQFTE 1470

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.