| Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q7TSY8 from www.uniprot.org...
The NucPred score for your sequence is 1.00 (see score help below)
1 MEYPGIKVDTVTSGIQRRVKGRIAKTNLNVSLASKIKAKILNNSSIFKIS 50
51 LKHNNRALARALSKEKENSRRITTEKMQLQKEVEKLNFENTFLRLKLNTL 100
101 NKKLVEIESHVSNDLLTAIEISSLSEFHQGSFLLSATKKQRNSKQCKPAH 150
151 LPYARVLLTSENDDDDGADDKWQTKCNNRTISKTSPDSTSSVSRQPSSLH 200
201 QCNLKAFPPKEDNQKTCGSGHLEHTSSVDILPNESHSDQSPKSSLSEMKT 250
251 APSPSLRREKLSHGNVTMRKKCVSSTPDILYVTDLDHQPTSSPGSNWNNE 300
301 IHGHTNETSNNTQRNAECFLDLPSESSSEPDAKRMELVQKNTDSFHFQKT 350
351 VYDAADMELTATDIGKIVAVSKSKKNQNKKKADCRKETFRKVKGASSDKK 400
401 RESSKRECKDGSEVGAEEEADAARAERGAGVLDGRGDSEEPNCISSTEQP 450
451 SQVNTQKKRTLQNSSDQENIQNTKRRQTYTTDEQEETNPFSRHSVKFLQD 500
501 GKFDLCQKTLHHNLSKPSRQTFVIRKSEKDNLFPNQEDKDTISENLEVTN 550
551 EFHIDDLSIEANENVCDHETQTMLDLKKSVSAQQNQTKINKTKQKINRRT 600
601 KIISVMSQVYEDNDKDIHVLEKDNFPFHTQANKETTSGNLESSKEFESPL 650
651 LFTRDNGSLRDCKTQNVLDLHKQIPDLYPDRNESQISKIPRQKVNRKTEV 700
701 ISGVKCFSNDQGVHCSEKDKSLLLQKDKDFPGTLKDLSEFDTPAFCNKDS 750
751 AKSCDYKSEMLLGLKKHDPNMQPACQDDSKAGKKLRQKVNRKTEIISKIT 800
801 QIHENDRGSTHDSLNKKLCQKVNISKIISQMNQIYETINEDGNGFKSSIK 850
851 DCEDIKSCDFGEINSNKKENYDPIQDPCTLVKKTKRKGSCKAGSSLAGAK 900
901 NRCGLQLTDSSQVQSVPLDSGLRHHPNEADSGPGEQTNLPKMQKQSAGRS 950
951 LGDAFSVSLGKEGSRPAKAVSKMTPKSKKRKLPLGCSPETHGTVEITPNT 1000
1001 DLAKAVDSQQTEKENYLEKEKIAKRKPDFCTKVLKPLSETCSSNIKNSSL 1050
1051 DSMCKSSLPLSISSRKTLMLEESSSLESTCIFQVGDAAHEKITTGTRNPH 1100
1101 HRTQKSTPGSRTSLVLVDTSSVSDTNPANPENESEGQSSHPMRRKRQCVP 1150
1151 LNLTEPSLRSKMRR 1164
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.