  |  Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. | 
NucPred
Fetching  Q7Z5J4  from www.uniprot.org...
The NucPred score for your sequence is 0.99 (see score help below)
   1  MQSFRERCGFHGKQQNYQQTSQETSRLENYRQPSQAGLSCDRQRLLAKDY    50
  51  YNPQPYPSYEGGAGTPSGTAAAVAADKYHRGSKALPTQQGLQGRPAFPGY   100
 101  GVQDSSPYPGRYAGEESLQAWGAPQPPPPQPQPLPAGVAKYDENLMKKTA   150
 151  VPPSRQYAEQGAQVPFRTHSLHVQQPPPPQQPLAYPKLQRQKLQNDIASP   200
 201  LPFPQGTHFPQHSQSFPTSSTYSSSVQGGGQGAHSYKSCTAPTAQPHDRP   250
 251  LTASSSLAPGQRVQNLHAYQSGRLSYDQQQQQQQQQQQQQQALQSRHHAQ   300
 301  ETLHYQNLAKYQHYGQQGQGYCQPDAAVRTPEQYYQTFSPSSSHSPARSV   350
 351  GRSPSYSSTPSPLMPNLENFPYSQQPLSTGAFPAGITDHSHFMPLLNPSP   400
 401  TDATSSVDTQAGNCKPLQKDKLPENLLSDLSLQSLTALTSQVENISNTVQ   450
 451  QLLLSKAAVPQKKGVKNLVSRTPEQHKSQHCSPEGSGYSAEPAGTPLSEP   500
 501  PSSTPQSTHAEPQEADYLSGSEDPLERSFLYCNQARGSPARVNSNSKAKP   550
 551  ESVSTCSVTSPDDMSTKSDDSFQSLHGSLPLDSFSKFVAGERDCPRLLLS   600
 601  ALAQEDLASEILGLQEAIGEKADKAWAEAPSLVKDSSKPPFSLENHSACL   650
 651  DSVAKSAWPRPGEPEALPDSLQLDKGGNAKDFSPGLFEDPSVAFATPDPK   700
 701  KTTGPLSFGTKPTLGVPAPDPTTAAFDCFPDTTAASSADSANPFAWPEEN   750
 751  LGDACPRWGLHPGELTKGLEQGGKASDGISKGDTHEASACLGFQEEDPPG   800
 801  EKVASLPGDFKQEEVGGVKEEAGGLLQCPEVAKADRWLEDSRHCCSTADF   850
 851  GDLPLLPPTSRKEDLEAEEEYSSLCELLGSPEQRPGMQDPLSPKAPLICT   900
 901  KEEVEEVLDSKAGWGSPCHLSGESVILLGPTVGTESKVQSWFESSLSHMK   950
 951  PGEEGPDGERAPGDSTTSDASLAQKPNKPAVPEAPIAKKEPVPRGKSLRS  1000
1001  RRVHRGLPEAEDSPCRAPVLPKDLLLPESCTGPPQGQMEGAGAPGRGASE  1050
1051  GLPRMCTRSLTALSEPRTPGPPGLTTTPAPPDKLGGKQRAAFKSGKRVGK  1100
1101  PSPKAASSPSNPAALPVASDSSPMGSKTKETDSPSTPGKDQRSMILRSRT  1150
1151  KTQEIFHSKRRRPSEGRLPNCRATKKLLDNSHLPATFKVSSSPQKEGRVS  1200
1201  QRARVPKPGAGSKLSDRPLHALKRKSAFMAPVPTKKRNLVLRSRSSSSSN  1250
1251  ASGNGGDGKEERPEGSPTLFKRMSSPKKAKPTKGNGEPATKLPPPETPDA  1300
1301  CLKLASRAAFQGAMKTKVLPPRKGRGLKLEAIVQKITSPSLKKFACKAPG  1350
1351  ASPGNPLSPSLSDKDRGLKGAGGSPVGVEEGLVNVGTGQKLPTSGADPLC  1400
1401  RNPTNRSLKGKLMNSKKLSSTDCFKTEAFTSPEALQPGGTALAPKKRSRK  1450
1451  GRAGAHGLSKGPLEKRPYLGPALLLTPRDRASGTQGASEDNSGGGGKKPK  1500
1501  MEELGLASQPPEGRPCQPQTRAQKQPGHTNYSSYSKRKRLTRGRAKNTTS  1550
1551  SPCKGRAKRRRQQQVLPLDPAEPEIRLKYISSCKRLRSDSRTPAFSPFVR  1600
1601  VEKRDAFTTICTVVNSPGDAPKPHRKPSSSASSSSSSSSFSLDAAGASLA  1650
1651  TLPGGSILQPRPSLPLSSTMHLGPVVSKALSTSCLVCCLCQNPANFKDLG  1700
1701  DLCGPYYPEHCLPKKKPKLKEKVRPEGTCEEASLPLERTLKGPECAAAAT  1750
1751  AGKPPRPDGPADPAKQGPLRTSARGLSRRLQSCYCCDGREDGGEEAAPAD  1800
1801  KGRKHECSKEAPAEPGGEAQEHWVHEACAVWTGGVYLVAGKLFGLQEAMK  1850
1851  VAVDMMCSSCQEAGATIGCCHKGCLHTYHYPCASDAGCIFIEENFSLKCP  1900
1901  KHKRLP                                              1906
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold.  Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus.  Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them).  The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation).  Another benchmark is available in the Bioinformatics 2007 paper. | 
| NucPred score threshold |  Specificity |  Sensitivity | 
 | see above |  fraction of proteins predicted to be nuclear that actually are nuclear |  fraction of true nuclear proteins that are predicted (coverage) | 
 | 0.10 |  0.45 |  0.88 | 
 | 0.20 |  0.52 |  0.83 | 
 | 0.30 |  0.57 |  0.77 | 
 | 0.40 |  0.63 |  0.69 | 
 | 0.50 |  0.70 |  0.62 | 
 | 0.60 |  0.71 |  0.53 | 
 | 0.70 |  0.81 |  0.44 | 
 | 0.80 |  0.84 |  0.32 | 
 | 0.90 |  0.88 |  0.21 | 
 | 1.00 |  1.00 |  0.02 | 
| Sequences which score >= 0.8 with NucPred and which
                are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%.  (PredictNLS by itself is 87% correct with 26% coverage on the same data.) | 
Go back to the NucPred Home Page.