  |  Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. | 
NucPred
Fetching  Q7Z6E9  from www.uniprot.org...
The NucPred score for your sequence is 0.99 (see score help below)
   1  MSCVHYKFSSKLNYDTVTFDGLHISLCDLKKQIMGREKLKAADCDLQITN    50
  51  AQTKEEYTDDNALIPKNSSVIVRRIPIGGVKSTSKTYVISRTEPAMATTK   100
 101  AIDDSSASISLAQLTKTANLAEANASEEDKIKAMMSQSGHEYDPINYMKK   150
 151  PLGPPPPSYTCFRCGKPGHYIKNCPTNGDKNFESGPRIKKSTGIPRSFMM   200
 201  EVKDPNMKGAMLTNTGKYAIPTIDAEAYAIGKKEKPPFLPEEPSSSSEED   250
 251  DPIPDELLCLICKDIMTDAVVIPCCGNSYCDECIRTALLESDEHTCPTCH   300
 301  QNDVSPDALIANKFLRQAVNNFKNETGYTKRLRKQLPPPPPPIPPPRPLI   350
 351  QRNLQPLMRSPISRQQDPLMIPVTSSSTHPAPSISSLTSNQSSLAPPVSG   400
 401  NPSSAPAPVPDITATVSISVHSEKSDGPFRDSDNKILPAAALASEHSKGT   450
 451  SSIAITALMEEKGYQVPVLGTPSLLGQSLLHGQLIPTTGPVRINTARPGG   500
 501  GRPGWEHSNKLGYLVSPPQQIRRGERSCYRSINRGRHHSERSQRTQGPSL   550
 551  PATPVFVPVPPPPLYPPPPHTLPLPPGVPPPQFSPQFPPGQPPPAGYSVP   600
 601  PPGFPPAPANLSTPWVSSGVQTAHSNTIPTTQAPPLSREEFYREQRRLKE   650
 651  EEKKKSKLDEFTNDFAKELMEYKKIQKERRRSFSRSKSPYSGSSYSRSSY   700
 701  TYSKSRSGSTRSRSYSRSFSRSHSRSYSRSPPYPRRGRGKSRNYRSRSRS   750
 751  HGYHRSRSRSPPYRRYHSRSRSPQAFRGQSPNKRNVPQGETEREYFNRYR   800
 801  EVPPPYDMKAYYGRSVDFRDPFEKERYREWERKYREWYEKYYKGYAAGAQ   850
 851  PRPSANRENFSPERFLPLNIRNSPFTRGRREDYVGGQSHRSRNIGSNYPE   900
 901  KLSARDGHNQKDNTKSKEKESENAPGDGKGNKHKKHRKRRKGEESEGFLN   950
 951  PELLETSRKSREPTGVEENKTDSLFVLPSRDDATPVRDEPMDAESITFKS  1000
1001  VSEKDKRERDKPKAKGDKTKRKNDGSAVSKKENIVKPAKGPQEKVDGERE  1050
1051  RSPRSEPPIKKAKEETPKTDNTKSSSSSQKDEKITGTPRKAHSKSAKEHQ  1100
1101  ETKPVKEEKVKKDYSKDVKSEKLTTKEEKAKKPNEKNKPLDNKGEKRKRK  1150
1151  TEEKGVDKDFESSSMKISKLEVTEIVKPSPKRKMEPDTEKMDRTPEKDKI  1200
1201  SLSAPAKKIKLNRETGKKIGSTENISNTKEPSEKLESTSSKVKQEKVKGK  1250
1251  VRRKVTGTEGSSSTLVDYTSTSSTGGSPVRKSEEKTDTKRTVIKTMEEYN  1300
1301  NDNTAPAEDVIIMIQVPQSKWDKDDFESEEEDVKSTQPISSVGKPASVIK  1350
1351  NVSTKPSNIVKYPEKESEPSEKIQKFTKDVSHEIIQHEVKSSKNSASSEK  1400
1401  GKTKDRDYSVLEKENPEKRKNSTQPEKESNLDRLNEQGNFKSLSQSSKEA  1450
1451  RTSDKHDSTRASSNKDFTPNRDKKTDYDTREYSSSKRRDEKNELTRRKDS  1500
1501  PSRNKDSASGQKNKPREERDLPKKGTGDSKKSNSSPSRDRKPHDHKATYD  1550
1551  TKRPNEETKSVDKNPCKDREKHVLEARNNKESSGNKLLYILNPPETQVEK  1600
1601  EQITGQIDKSTVKPKPQLSHSSRLSSDLTRETDEAAFEPDYNESDSESNV  1650
1651  SVKEEESSGNISKDLKDKIVEKAKESLDTAAVVQVGISRNQSHSSPSVSP  1700
1701  SRSHSPSGSQTRSHSSSASSAESQDSKKKKKKKEKKKHKKHKKHKKHKKH  1750
1751  AGTEVELEKSQKHKHKKKKSKKNKDKEKEKEKDDQKVKSVTV          1792
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold.  Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus.  Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them).  The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation).  Another benchmark is available in the Bioinformatics 2007 paper. | 
| NucPred score threshold |  Specificity |  Sensitivity | 
 | see above |  fraction of proteins predicted to be nuclear that actually are nuclear |  fraction of true nuclear proteins that are predicted (coverage) | 
 | 0.10 |  0.45 |  0.88 | 
 | 0.20 |  0.52 |  0.83 | 
 | 0.30 |  0.57 |  0.77 | 
 | 0.40 |  0.63 |  0.69 | 
 | 0.50 |  0.70 |  0.62 | 
 | 0.60 |  0.71 |  0.53 | 
 | 0.70 |  0.81 |  0.44 | 
 | 0.80 |  0.84 |  0.32 | 
 | 0.90 |  0.88 |  0.21 | 
 | 1.00 |  1.00 |  0.02 | 
| Sequences which score >= 0.8 with NucPred and which
                are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%.  (PredictNLS by itself is 87% correct with 26% coverage on the same data.) | 
Go back to the NucPred Home Page.